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ABSTRACT.  

 

In this report, Twitter, a popular micro-blogging site, is studied to identify new and existing 

features that can be used to identify bot accounts.  A real labelled dataset is created, with a 

demonstrated inter-rater agreement, alongside a larger unclassified dataset.  The evaluation 

applies four different classifiers, and uses a combination of features indicated by prior 

research and newly identified semantic features to create a detection system of optimised 

features, which is shown to be accurate in identifying bot accounts. 

 

  



FYP X19: Social Bot Identification on Twitter 

 

Kieran Brahney (32857004) Page 4 of 54 

TABLE OF CONTENTS 

Abstract. ..................................................................................................................................... 3 

Working Documents .................................................................................................................. 5 

1 Introduction ........................................................................................................................ 6 

2 Background ......................................................................................................................... 8 

2.1 Relevant Work............................................................................................................. 8 

2.1.1 Detecting Spam Bots in Online Social Networking Sites: A Machine Learning 

Approach ............................................................................................................................ 8 

2.1.2 Detecting Spammers on Twitter .......................................................................... 8 

2.1.3 Detecting Automation of Twitter Accounts: Are you a Human, Bot or Cyborg?9 

2.1.4 Humans and Bots in Internet Chat: Measurement, Analysis, and Automated 

Classification ...................................................................................................................... 9 

2.1.5 Detecting Social Spam Campaigns on Twitter .................................................... 9 

2.1.6 Detecting Spammers on Social Networks.......................................................... 10 

2.1.7 Spam Detection on Twitter Using Traditional Classifiers ................................. 10 

2.1.8 Scaling-Laws of Human Broadcast Communication Enable Distinction between 

Human, Corporate and Robot Twitter Users .................................................................... 10 

2.2 Limitations ................................................................................................................ 11 

3 Data Gathering and Annotation ........................................................................................ 12 

3.1 Twitter Crawler ......................................................................................................... 12 

3.1.1 Design ................................................................................................................ 12 

3.1.2 Implementation .................................................................................................. 14 

3.1.3 The System in Operation ................................................................................... 15 

3.2 Annotation System .................................................................................................... 16 

3.2.1 Design ................................................................................................................ 16 

3.2.2 Implementation .................................................................................................. 16 

3.2.3 The System in Operation ................................................................................... 18 

4 Account Classification ...................................................................................................... 20 

4.1 Features ..................................................................................................................... 20 

4.1.1 State of the Art Features .................................................................................... 20 

4.1.2 New Features ..................................................................................................... 22 

4.2 Implementation.......................................................................................................... 27 

4.2.1 Constructing the ARFF file ................................................................................ 27 

4.2.2 Using Weka Explorer ......................................................................................... 28 

4.3 Experimentation Results ........................................................................................... 29 

4.3.1 State-of-the-art vs New Features ....................................................................... 29 

4.3.2 User-based Features vs. Content-based Features ............................................... 29 



FYP X19: Social Bot Identification on Twitter 

 

Kieran Brahney (32857004) Page 5 of 54 

4.3.3 Combined Features ............................................................................................ 31 

4.3.4 Best Model Selection ......................................................................................... 31 

5 Conclusion ........................................................................................................................ 34 

5.1 Review of the Aims ................................................................................................... 34 

5.2 Future Work .............................................................................................................. 34 

5.3 Closing Comments .................................................................................................... 34 

6 Acknowledgements .......................................................................................................... 35 

References ................................................................................................................................ 36 

Appendix A .............................................................................................................................. 37 

Appendix B.1: Box plot of the mean number of urls ............................................................... 38 

Appendix B.2: Box plot of the standard deviation of the sentiment ........................................ 39 

Appendix B.3: Box plot of the total number of friends ........................................................... 40 

Appendix B.4: Box plot of the total number of user interactions ............................................ 41 

Appendix B.5: Box plot of the total number of retweets ......................................................... 42 

Appendix C: Login Interface ................................................................................................... 43 

Appendix D: Registration Interface ......................................................................................... 43 

Appendix E: Help Guide Interface .......................................................................................... 44 

Appendix F: Annotation Interface ........................................................................................... 45 

Appendix G: Class Diagram .................................................................................................... 46 

Appendix H: Proposal .............................................................................................................. 47 

 

WORKING DOCUMENTS 

A summary of the working documents for this report can be found at: 

http://www.lancaster.ac.uk/ug/brahney/FYP/ 

Further links will be available from this page to each individual working document. 

 

  

http://www.lancaster.ac.uk/ug/brahney/FYP/


FYP X19: Social Bot Identification on Twitter 

 

Kieran Brahney (32857004) Page 6 of 54 

1 INTRODUCTION 

Online social media hit the world by storm in the early 2000’s with sites such as 

Friendster and MySpace, ever since then usage of social media has been on the increase and 

only recently has it reached a truly global audience. Twitter, the network this report focuses 

on, was founded by Jack Dorsey a thirty-seven year old Computer Programmer in June 2006 

as a microblogging platform with the intentions of providing up-to-the minute information 

about global trending events. The difference between Twitter and other social networks is that 

users interact with each other using short text based posts limited to 140 characters which are 

known as tweets. A tweet can include hashtags, these are a short text based string prefixed by 

a # character used to associate the tweet to a given topic. When many users interact with the 

same topic it can lead to what is known as a Trending Topic, such that it is considered 

popular. Trending Topics are associated with the geographic location of the user posting and 

enable one to search for all the users posting to a given topic. Relationships on Twitter differ 

from prior and other current social networks in that it consists of followers. These are people 

who subscribe to receive all the tweets from a given user(s), the relationship can become 

bidirectional when two users follow each other, they are then known as friends. 

 As of 1st Jan 2014 there are approximately 645 million Twitter users (Statistic Brain, 

2014), the growing popularity has meant it has become an ideal home for automated accounts 

or bots. Automation is a double edged sword; on the one hand legitimate bots provide instant 

information such as that from news feeds. On the other hand, malicious bots take advantage 

of Twitter’s social model by spreading spam (malware/advertising) through Trending Topics 

or overwhelming users with notifications. Twitter itself does not distinctly check for 

automation, only requiring the recognition of a CAPTCHA during registration. This begs the 

question, despite the rise and reliance on Twitter data for providing up-to-the-minute 

information can one truly trust the content and distinguish between automated and legitimate 

messages. As such there have been a number of a research efforts into determining the 

difference between bots and humans on the social network. However, these approaches have 

yet to look into the effects of language analysis techniques and also no existing work provides 

up-to-date, reliable, data sets of bot users.   

 The aim of this project is to design and implement a classification system that can 

accurately and efficiently differentiate between bots and humans on the social network, 

Twitter. This root aim can be further divided into a number of sub-goals: 

● Discover state-of-the-art approaches for detecting bots by reviewing existing research 

and understand how to build upon their limitations 

● Design and implement a data gathering system to build a Twitter data set that can be 

annotated via web interface as to whether a user is a bot or not  

● Identify new features or techniques to extend upon the existing research base 

● Apply machine learning algorithms to the data-set using a combination of previously 

used (state-of-the-art) and new features 

● Analyse the results of various algorithms and feature sets using statistical tests 

 In the report, before detailing the proposed system, existing research methods are 

scrutinized to discover current state-of-the-art approaches, and their limitations, for the 

detection of bots on Twitter or other areas of computing, together with the methods they 

employed with regard to data collection.  

 The report is broken into two key sections, data gathering and account classification. 

The data gathering section of this report focuses on the key design decisions in building a 
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gold standard data set due to lack of existing work providing up-to-date data sets of bot users. 

Furthermore, the design and implementation of an annotation system to enable the manual 

classification of the data set that could be used to evaluate the approach against. 

Contributions to the community include a pre-classified data set with proven high inter-rater 

agreement, also a much larger unclassified data set. The account classification section will 

then focus on the feature sets employed for use with various Machine Learning algorithms. 

New feature contributions will be analysed against existing state-of-the-art using statistical 

tests to see how these affect the overall classification result. To conclude, a description of the 

overall results will be presented along with proposals for further work in this area. 
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2 BACKGROUND 

 Detection of automation has been widely studied for a number of decades across the 

computing industry, looking at automations such as gaming bots and web-based spam bots. 

Previous work into spam detection has looked into email and web but until 2010 not much of 

this research had been applied to social networks such as Twitter. This section will 

summarise the existing research of state-of-the-art approaches to detecting bots on Twitter 

and then later, analyse their limitations (Section 2.2) with the aim of improving on them in 

this report.  

2.1 Relevant Work 

2.1.1 Detecting Spam Bots in Online Social Networking Sites: A Machine Learning 

Approach 

 (Wang, 2010) proposed a machine learning approach to distinguishing spam bots in 

online social networking sites. The research performed data collection using the 

public_timeline API, selecting 20 non-protected users whom had set a custom user icon. For 

each of the 20 returned users their account details, 20 most recent tweets and a list of their 

followers/friends IDs were extracted via separate API calls. Out of this data set (Wang, 2010) 

manually labelled 500 accounts into spam or not spam by reading the users 20 most recent 

tweets and checking the number of followers/friends.  

The research method used 3 graph-based features (number of friends, number of 

followers, follower/friend ratio) and 3 content-based features (duplicate tweets, total URLs, 

total replies/mentions) for the machine learning algorithms. These features were applied to 

four classifiers: Decision Tree, Neural Networks, Support Vector Machines (SVM) and 

Naive Bayes, using 10-fold cross validation. The results of the experiment were proven 

against the F-Measure produced for each classifier, with Naive Bayes performing best at 

91.7% accuracy. 

2.1.2 Detecting Spammers on Twitter   

 (Benevenuto, et al., 2010) took a similar approach to (Wang, 2010) in detecting bots 

on Twitter but on a much larger scale. The data gathering process involved crawling all 

Twitter user IDs from 0 to 80 million, returning 54 million active accounts. 8207 of these 

accounts were selected for pre-classification based on whether they had posted tweets in 3, 

largely discussed, trending topics from 2009. To further the dataset, users were randomly 

selected, to include those of whom posted at least one tweet containing a URL together with 

one of the 3 trending topic terms. The selected data was then made available via a website for 

volunteers to classify the accounts. Each account was classified by 3 volunteers to reduce the 

possibility of human error.  

Two feature sets (each consisting of 10 features) were determined for use on machine 

learning algorithms, these being content based and user behaviour. The most promising 

features for detecting spammers were found to be high use of spam words, URLs, hashtags, 

with a high follower/friend ratio and typically a young account. The 20 features were then 

applied to the libSVM classifier using 5-fold cross validation. Experimentation results 

revealed 70% accuracy in determining spammers with 96% non-spammers, though there was 

a clear trade-off between incorrectly classifying non-spammers which could be manipulated 

through the cost mechanism of SVM.  
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2.1.3 Detecting Automation of Twitter Accounts: Are you a Human, Bot or 

Cyborg?   

 (Chu, et al., 2012) aimed to characterise the differences between Humans, Bots and 

Cyborgs. The data gathering process made use of a depth-first search approach. Firstly 5 

users were randomly selected as seeds for the system, for each user the system would look at 

the follower list and traverse to a depth of 3. Similar to the work of (Wang, 2010), the 

public_timeline API was also used to get the 20 most recent global tweets to help diversify 

the user pool. In total 512,000 users were collected using both methods simultaneously. 

Using the principle behind the Turing test 6,000 users were manually classified into the 3 

distinct categories based on intelligence, originality of tweets and types of URL present 

(malicious).  

The pre-classified data set was applied to the Random Forest Machine Learning 

algorithm with features including: entropy of tweet intervals, source of tweets, URL blacklist 

checking, and account reputation. The computed features were plugged into the Weka 

explorer using 10 fold cross validation, yielding results on average of 96% accuracy. It was 

concluded that bots and cyborgs exhibit regular patterns with low entropy and the most 

accurate features were tweet source and URL blacklist checks.  

2.1.4 Humans and Bots in Internet Chat: Measurement, Analysis, and Automated 

Classification 

 Internet chat is a popular concept that has been around for a number of years, being 

employed in games and commercial chat networks. (Gianvecchio, et al., 2011) studied the 

characteristics of automated accounts in Yahoo! chat. In August and November 2007 1440 

hours of chat logs were randomly gathered from popular chat rooms. Similar to (Chu, et al., 

2012) a variation of the Turing test was employed for manual classification of chat users into 

human, bot and ambiguous.  

Statistical and conversational analysis revealed that bots often send messages at 

regular intervals, replay other user’s messages and use synonyms to avoid blacklisted 

phrases. Firstly, an entropy based classifier was used on the message size and inter-message 

delay to build a human or bot corpus. Secondly, a Bayesian classifier (CRM114 

Discriminator) was used against the content of chat messages. It was concluded the entropy 

solution was able to detect unknown bots but it took a large amount of data to correctly 

classify it, whereas the Bayesian classifier with the help of the bot corpus provided by the 

entropy classifier was quick and accurate. 

2.1.5 Detecting Social Spam Campaigns on Twitter 

In 2012 (Chu, et al., 2012) used multiple features and Machine Learning to identify 

spam campaigns on Twitter. From February to April in 2011 more than 50 million tweets and 

around 22 million accounts were gathered to form a data set. This was achieved using a 

combination of the Twitter streaming and search APIs, respectively. The study specifically 

focused on content containing URLs as an indicator for possible spam activity, converted any 

short URLs to its final destination. A clustering algorithm was then used to cluster tweets that 

shared the same URL into spam campaigns. Any unknown campaigns were finally labelled 

by a human leaving a total pre-labelled data set of 1324 campaigns. 

The classification system implemented the classifier based on the Random Forest 

algorithm. A variety of features were used; the most accurate identified as: account diversity 

ratio, timing entropy, URL blacklist checks and follower/friend ratio. Content Semantic 

Similarity was a new feature implemented by Chu et al. it sought to find duplicate or similar 
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content across a user’s tweets. The results of the classification are compared against 7 other 

classifiers with Random Forest performing best at 94.5% accuracy.  

2.1.6 Detecting Spammers on Social Networks 

 (Stringhini, et al., 2010) analysed the extent to which spammers infiltrated 3 popular 

social networks, Facebook, MySpace and Twitter. A large data set was gathered by creating 

300 “honey-profiles” on each of the networks. These accounts would then log any activity 

with the account, including accepting friend requests, and any information sent to the account 

for a period of 12 months from June 2009 to June 2010. In the case of Twitter, the data set 

was then manually labelled by the researchers into those that were legitimate and those that 

were spam.  

The classification system made use of the Weka Machine Learning framework with 

Random Forest employed as the classifier. A general feature set was implemented for all 

networks, this included: follower/friend ratio, use of URLs, message similarity, number of 

tweets and number of friends. The approach concluded that out of 15,932 accounts detected 

as spammers and reported to Twitter, only 75 were reported back as being false positives. 

2.1.7 Spam Detection on Twitter Using Traditional Classifiers 

(McCord & Chuah, 2011) measured spam detection on Twitter using user and 

content-based features. A data set was formed by crawling the Twitter API gathering account 

information together with 100 of their most recent tweets. 1,000 users were then randomly 

selected and labelled into two classes, ‘spam’ and ‘non-spam’, by the researchers to use as a 

ground truth.  

The ground truth was run against 4 traditional classifiers: Random Forest, Support 

Vector Machine, Naive Bayes and k-Nearest Neighbours. The features implemented for use 

in these classifiers were broken down into user and content-based features. User-based 

features included follower/friend ratio, and the distribution of tweets over a 24 hour period. 

The content-based feature included the number of URLs, interactions, re-tweets, hashtags, the 

use of spam words and also the length of the tweet. The result of these features yielded 95.7% 

accuracy when the Random Forest classifier was used. 

2.1.8 Scaling-Laws of Human Broadcast Communication Enable Distinction 

between Human, Corporate and Robot Twitter Users 

 (Tavares & Faisal, 2013) looked at statistical laws dictating the timing of human 

actions in communication decisions. The researchers built their data set by crawling the 

Twitter API, gathering account data together with a total of 800 tweets per account. The 

crawler was provided with a list of accounts to process which had been manually selected by 

the researchers. In total, the study collected over 160,000 thousand tweets; a subset of which 

were manually classified into 3 user categories: Personal, Managed, and Bot-controlled based 

on time intervals between posts. 

 To test the hypothesis of differentiating based on timing intervals, two probabilistic 

inference algorithms were implemented. Firstly, a Naive Bayesian classifier looked at 

features such as the time of day of each tweet, the intervals between tweets, and the number 

of tweets per day. This classifier yielded between 75 - 84% accuracy. Secondly, a prediction 

algorithm looked to estimate the time of a user’s next tweet. The results showed that it was 

possible to reliably distinguish between the three categories based on timing intervals alone. 
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2.2 Limitations 
(Chu, et al., 2012; Stringhini, et al., 2010) presented the idea of a feature in the form of 

content semantic similarity. This was the only of the related works to attempt analysis of the 

language in the tweet, by determining those of similar context as opposed to the simpler 

Levenshtein distance approach presented by (Wang, 2010). In this report, section 4 will detail 

new features improving upon the lack of language analysis in the form of sentiment and 

comparing tweet against hashtag terms. 

A number of the related works described above did not employ an inter-rater agreement 

when pre-classifying their data set, instead they manually classified the accounts themselves. 

The lack of a diverse volunteer set for the classification of accounts may have led to the 

introduction of bias in the process of determining whether accounts were bot or a human, and 

suggest the results may be unreliable for assessment. In this report, section 3 will detail the 

use of 3 volunteers to label each account, together with the inter-rater agreement formed on 

the basis of their opinions.  

(Benevenuto, et al., 2010) did however use an inter-rater agreement and also built a 

website to allow random members of the public to classify the data set. This being said, in 

Benevenuto et al.’s approach, and all other related works, the agreement between volunteers 

was not proven via statistical tests, thus the reliability is somewhat questionable. Section 3 of 

this report will describe how the Cohen’s kappa statistic will be employed in order to 

determine the strength of agreement between volunteers and hence ensure a degree of 

reliability. 

The number of classifiers used varied between the related works. However 

(Benevenuto, et al., 2010; Chu, et al., 2012; Gianvecchio, et al., 2011; Stringhini, et al., 2010; 

Tavares & Faisal, 2013) specifically focus on one classifier. Whilst there is a reason behind 

this approach, it could be considered a limitation in that it may generate a better solution 

using additional classifiers. Section 4 will then detail how results vary across 4 traditional 

classifiers utilising different feature sets. 

Some of the data gathering approaches such as that of (Wang, 2010) only gathered a 

limited data set. For example, (Wang, 2010) only gathered a total of 20 tweets per user. The 

average Twitter user has more than 20 tweets1 and thus such a small sample of tweets cannot 

be assumed to provide an accurate representation of an account. Section 3 of this report, will 

describe how the maximum possible number of tweets will be gathered from the API.   

                                                 

1 Smith, C., 2014. 116 Amazing Twitter Statistics (Updated February 2014). [Online]  

Available at: http://expandedramblings.com/index.php/march-2013-by-the-numbers-a-few-amazing-twitter-stats 

[Accessed 16/3/2014] 

http://expandedramblings.com/index.php/march-2013-by-the-numbers-a-few-amazing-twitter-stats
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3 DATA GATHERING AND ANNOTATION 

Data gathering is the process of crawling Twitter to produce a data set against which 

the classification models can be run on. Prior to undergoing the task of producing a system 

which can gather, manage and enable classification of the accounts a search for existing data 

sets took place. This research involved contacting (Wang, 2010; Benevenuto, et al., 2010; 

Chu, et al., 2012) to enquire if their data set was publicly available. In the case of 

(Benevenuto, et al., 2010) a data set was publicly available however due to a request from 

Twitter information about users and tweets had to be removed. The approach outlined in 

section 4 of this report very much relies upon this data to build the feature set. Thus 

unfortunately, it soon became apparent that there were very few publicly available data sets 

that had already been classified as Human/Bot. This difficulty led to the decision to design 

and implement a system that could gather the required data, with a separate system being 

employed for the classification of the acquired data. This approach ensured a bespoke, gold-

standard, data set could be built with proven inter-rater reliability thus improving upon the 

limitations of previous methods identified in section 2.2. 

The data gathering process was divided into two separate functions, firstly a 

standalone program to crawl the Twitter API and scrape data; followed by another more 

comprehensive system for the annotation of the accounts. All parts of the system were 

developed using a combination of PHP and MySQL for processing and web technologies 

(HTML, CSS, JavaScript) for any front-end interfaces. Whilst these may not be the most 

efficient in terms of processing or data storage in the modern climate, they were readily 

available with large support communities and did not have any problems with the amount of 

data that this project was processing. 

3.1 Twitter Crawler 

3.1.1 Design 

The crawler was composed of two standalone PHP programs, running on a virtual 

private server (VPS.) The first program, known from here on as the Queue, crawled the 

Twitter API for account data on a periodic basis and stored this in a MySQL database. The 

second program, from here on known as the Poller, polled data from the queue, making 

further calls to the API to gather account details and then also stored this in the MySQL 

database. Figure 3-1 shows the architecture of the crawler and the various components 

involved, database views are described in their appropriate sections. 

A key design decision regarding accessing the Twitter API was understanding their 

rate limiting system. Rate limiting is the process of restricting the number of requests any 

Figure 3-1 Twitter Crawler System Architecture 
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user can make to the API per rate limiting window. As of version 1.1 of the API, Twitter 

adjusted the rate limiting window to be divided into 15 minute intervals. Typically the 

amount of requests varies depending on the particular API function that one wishes to access, 

these will be detailed later on. 

The queue 

The queue data store was emulated using a single MySQL table consisting solely of 

Twitter account IDs. The objective of the queuing program was to gather a diversified set of 

account data across a range of users. The following shows a breakdown of how the program 

worked (see Table 3-1): 

1. Lookup the top UK Trending topics. The decision to use the UK, when other locations 

are available, was due to tweets containing different languages which would 

ultimately interfere with any attempts at using Natural Language Processing during 

classification. 

2. Search for tweets existing within the returned trending topics, again, limited to 

English only. 

3. Lookup the returned users’ followers. 

 

 

Step API Function Rate limit Number of calls 

made 

Description of 

returned data 

1 GET 

trends/place2 

15/user 

15/app 

1 10 trending 

topics 

2 GET 

search/tweets3 

180/user 

450/app 

10 100 tweets 

matching search 

query 

3 GET 

followers/ids4  

15/user 

15/app 

15 Up to 5,000 user 

IDs 

Table 3-1 The queue API Functions 

 Table 3-1 shows that for each of the ten trending topics, 100 associated tweets were 

returned resulting in potentially 1,000 tweets and associated user data. One key limitation of 

this design was that out of this 1,000 it was only possible to lookup 15 of those users’ 

followers (due to rate limiting in step 3). This means that the maximum amount of accounts 

that can be returned by the program, in one go, is (10 ×  100)  +  (15 ×  5,000)  =  76,000 

accounts. The decision to add the follower ID lookup was to speed up the crawling process 

and thus no real data is lost by not having the ability to further lookup the followers of the 

remaining 1000 − 15 = 985 accounts. 

                                                 

2 Twitter, 2013. GET trends/place | Twitter Developers. [Online]  

   Available at: https://dev.twitter.com/docs/api/1.1/get/trends/place [Accessed 2/3/2014]. 

3 Twitter, 2013. GET search/tweets | Twitter Developers. [Online]  

   Available at: https://dev.twitter.com/docs/api/1.1/get/search/tweets [Accessed 2/3/2014]. 

4 Twitter, 2013. GET followers/ids | Twitter Developers. [Online]  

   Available at: https://dev.twitter.com/docs/api/1.1/get/followers/ids [Accessed 2/3/2014]. 

https://dev.twitter.com/docs/api/1.1/get/trends/place
https://dev.twitter.com/docs/api/1.1/get/search/tweets
https://dev.twitter.com/docs/api/1.1/get/followers/ids
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The Poller 

 The objective of the Poller was to function once the queue had stored sufficient data. 

It polled data from the queue in groups of 300 and made a lookup for the particular user’s 

timeline, the returned data was then stored in a User, and Tweets table. Table 3-2 justifies 

polling in groups of 300 because application authentication meant that much more data could 

be processed per rate limit window.  

 

Step 

API Function Rate limit Number of calls 

made 

Description of 

returned data 

1 GET 

statuses/user_tim

eline5  

180/user 

300/app 

300 Up to 3,200 

tweets and 

various user data 

Table 3-2 The Poller API Functions 

 

3.1.2 Implementation 

 Authentication with the Twitter API requires OAuth, an open protocol to allow secure 

authorization in a simple and standard way. A number of OAuth libraries exist for PHP6  

however one that I am particularly familiar with is tmhOAuth7. The library was used to deal 

with initial authentication requests to the API. To further the use of the library a number of 

wrapper functions were created in order to keep the code clean but also make it easy to gather 

the required data and parse it in a clean manner. 

 The User table consisted of the basic account properties, this included: Twitter 

account ID, account name, description, creation date, location, total followers, total friends 

and whether the default profile picture was set. The Tweets table consisted of all of a user’s 

tweets, this included: tweet ID, account ID, tweet contents, date/time, source, whether or not 

the tweet was retweeted and a retweet count. In both instances the date/time was converted to 

UTC and stored as the DATETIME data type. A relationship links the two tables by account 

ID. 

  

                                                 

5 Twitter, 2013. GET statuses/user_timeline | Twitter Developers. [Online]  

   Available at: https://dev.twitter.com/docs/api/1.1/get/statuses/user_timeline [Accessed 2/3/2014]. 

6 Twitter, 2014. Twitter Libraries | Twitter Developers. [Online]  

   Available at: https://dev.twitter.com/docs/twitter-libraries#php [Accessed 10/3/2014]. 
7 GitHub, 2013. themattharris/tmhOAuth. [Online]  

   Available at: https://github.com/themattharris/tmhOAuth [Accessed 10/3/2014]. 

https://dev.twitter.com/docs/api/1.1/get/statuses/user_timeline
https://dev.twitter.com/docs/twitter-libraries#php
https://github.com/themattharris/tmhOAuth
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3.1.3 The System in Operation 

Before the Twitter crawler could operate, an API account had to be created by 

registering a Twitter account and signing into the development portal8. In the design section it 

was noted that Twitter applications get higher rate limit windows than single user access, thus 

in the development portal an independent application was registered for the API account. The 

application provided authentication keys for the Twitter API, these were plugged into the 

Twitter crawler code before operation. 

The standalone queue program described in the design section was placed onto a VPS 

and executed once every 15 minutes using the Linux cron9, for example: 

*/15 * * * * php /home/kieran/Twitter/QueueUsers.php 

Once the queue had sufficient account data (100,000+) it was stopped and the Poller 

was set to execute once every 15 minutes. In order to speed up the Poller, this process was 

then repeated across 5 independent VPS’. As mentioned in Table 3-2 this allowed for 5 ×
300 =  1,500 accounts to be processed from the queue every 15 minutes. 

The standalone polling program described in the design section ran in parallel to the 

queue but in this instance only ran from the database server once every 15 minutes. The data 

gathering process ran for two weeks from the 13/11/2013 gathering a total of 75 million 

tweets and 485,000 users.   

                                                 

8 Twitter, 2014. Twitter Developers. [Online]  

   Available at: https://dev.twitter.com [Accessed 10/3/2014]. 
9 ArchLinux, 2014. cron - ArchWiki. [Online]  

Available at: https://wiki.archlinux.org/index.php/cron [Accessed 10/3/2014] 

https://dev.twitter.com/
https://wiki.archlinux.org/index.php/cron
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3.2 Annotation System 

3.2.1 Design 

The annotation system was a key part of the data gathering process. The main aim of 

the annotation system was to provide an easy-to-use web interface for the classification of 

previously gathered account data. Ease-of-use of the system would be key to enabling the 

volunteer to quickly make informed decisions about a given account thus allowing efficient 

use of a volunteer’s time.  

The system was broken down into two components, authentication and annotation. 

Upon first visit to the system a volunteer was required to register an account, providing a 

unique email address and password. Registration of an account was a required process so that 

annotation actions can be tied back to a particular volunteer. It was thus important that the 

accounts were secured by password authentication so it is ensured that actions are the 

volunteers own. 

Once authenticated the volunteer was 

immediately presented with an account to 

annotate as illustrated in Figure 3-2. The 

system enabled a volunteer to classify an 

account as either bot, human or discard. A 

discard option was provided as Twitter makes 

it apparent in the API documentation10 that 

language detection is best effort, thus there 

was the possibility that some tweets may not 

be in English which will then, later interfere 

with Natural Language Processing techniques.  

The annotation system required that a 

total of 3 volunteers label each account. The 

purpose behind this approach is to form a 

consensus based on the 3 provided verdicts, 

for example: user A states bot, user B states bot and user C states human; the consensus here 

would be bot. This is a major enhancement upon previous research efforts such as that of 

(Wang, 2010) who labelled the dataset personally. The present approach overcomes that by 

allowing a diversified set of volunteers to annotate as many accounts as they please. 

Moreover, it should also provide greater agreement regarding annotations based on more than 

one user’s opinion. 

3.2.2 Implementation 

 The annotation system was built using a combination of PHP for the backend activity 

and HTML/CSS/JavaScript for the user interface. The user interface made use of an open 

source web development framework called Bootstrap11. The components provided by 

Bootstrap are used to quickly and easily create well-designed interfaces without the hassle of 

composing the CSS/JavaScript oneself. For example, the annotation interface was specifically 

engineered using Bootstrap to fit on the vast majority of screen resolutions without the need 

                                                 

10 Twitter, 2013. GET search/tweets | Twitter Developers. [Online]  

   Available at: https://dev.twitter.com/docs/api/1.1/get/search/tweets [Accessed 2/3/2014]. 
11 Bootstrap. [Online]  

   Available at: http://getbootstrap.com/ [Accessed 13/3/2014] 

Figure 3-2 Annotation Interface Mockup 

https://dev.twitter.com/docs/api/1.1/get/search/tweets
http://getbootstrap.com/
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for scrolling. This key design decision ensured that all information was available to the user 

on one screen and the user could quickly make an informed decision as to how to classify a 

given Twitter account. 

 In order for the annotation system to function a number of SQL tables were required:- 

1. Login data:  

As described in the design section the login data required an e-mail address, password 

and optional last activity timestamp. The password was stored encrypted using the 

MD5 hashing algorithm with a maximum length of 32 characters. Encrypting the 

password data was a requirement of the system due to the public facing nature of the 

annotation system. 

2. Accounts to annotate  

This table consisted of the Twitter account ID, who had annotated the account and the 

total number of users who had annotated the account. Who had annotated the account 

was a character field storing a serialized array of the user ID from the login data table. 

The total number of times the account had been annotated was also provided to avoid 

calculating this every time. 

3. Annotation results   

The annotation results consisted of the Twitter account ID, the user id (from the login 

table) and the result, i.e.: what they classified the account as human, bot, or discard. 

This classification field could have been simplified into an integer to reduce the 

amount of space taken by the field but this table only consisted of 3,000 rows (3 x 

1,000 accounts to label.) 

 The accounts to annotate table (labels) was populated using 1,000 accounts from the 

previously gathered data set. Many of the related works, (McCord & Chuah, 2011; Stringhini, 

et al., 2010), identified that follower/friend ratio was a useful feature. In order to gain a good 

ratio of bots against humans a preliminary filter was decided upon which filters accounts 

whom have a follower/friend ratio less than or equal to 0.2. Out of the 485,000 users stored 

this returned a total of 10,127 users which is far too large. The data set was further reduced 

by also filtering accounts that have less than 10 friends, this returned a total of 772 accounts. 

The SQL for this preliminary filter can be found in Appendix A.   

 Upon first visit to the annotator, a volunteer was required to login. This page made a 

look up to the volunteers table consisting of an e-mail address, password and last activity 

timestamp. Based on the provided details the PHP encrypted the password using the MD5 

hashing algorithm and looked for a match in the table. Due to the public nature of the 

annotator, security is key. All PHP code interfaced with the database through the PHP 

Database Objects12 (PDO) extension in order to minimise the possibility of SQL injection.  

 As described earlier, the annotation system required 3 users to label each account. 

This worked by storing a log of how many times a user has been annotated in the database, 

along with who made what annotation. When a user visits the annotation page a lookup was 

made to find all accounts that had been labelled by less than 3 people, this set is ordered 

randomly using the SQL construct “ORDER BY RAND().” The randomness is added to 

reduce the possibility, in the case of more than 3 concurrent users, being asked to label the 

                                                 

12 PHP, n.d. PHP: Introduction - Manual. [Online]  

Available at: http://www.php.net/manual/en/intro.pdo.php [Accessed 13/3/2014]. 

http://www.php.net/manual/en/intro.pdo.php
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account (thus wasting some of their time as only 3 of the users’ annotations would be 

logged.)  

3.2.3 The System in Operation 

3.2.3.1 Volunteer gathering 

 Volunteers were recruited at random by asking members of the public to create an 

account and classify as many accounts as possible in the time they were able to dedicate. One 

method of recruitment included posting to Twitter requesting volunteers, this ensured that 

those who were classifying the accounts were familiar with automated accounts from their 

daily usage.  

In total 28 volunteers were recruited, with each classifying differing volumes of 

accounts. Two users, including myself, classified the vast majority of the data set forming the 

first 2 opinions of the inter-rater agreement. The remaining opinion is scattered across the 

other 26 volunteers who classified between 324 accounts and only 1 account.  

3.2.3.2 User Labelling 

This section illustrates the system in operation from a volunteer’s first visit to the 

annotation of accounts. A step by step walk through of the system is described below: 

1. Appendix C: Login Interface illustrates what was presented to the volunteer upon first 

visit to the system, requiring a volunteer to authenticate. 

2. If a user did not currently have an account they could create one using the “Register” 

link. Appendix D: Registration Interface illustrates this page. Upon registration the 

volunteer was immediately authenticated. 

a. The volunteer was then redirected to the annotation interface. A help guide 

was automatically made aware to the volunteer, illustrated in Appendix E: 

Help Guide Interface. The automatic display ensured that the reader was aware 

of the classification procedure and also thanked them for their time.  

3. Once a volunteer was authenticated they were presented with the annotation interface 

to begin annotating accounts, illustrated in Appendix F: Annotation Interface. 

4. When a volunteer made a decision about a given account, the form was submitted and 

another user was immediately displayed. 

5. If no user could be found in the accounts to annotate table then the following error 

message was displayed: 

Oh Snap! It looks like we've completed all the accounts that need rating! Thank you for your efforts! 
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3.2.3.3 Inter-rater Agreement 

 The inter-rater agreement ensures majority agreement across n-volunteers, in this 

report 3 volunteers rated each twitter account. In order to prove the strength of agreement the 

Cohen’s kappa statistic (Kundell & Polansky., 2003) was employed. Firstly, a PHP program 

was written to calculate the kappa statistic between two users. The program would perform a 

number of SQL queries to populate the matrix in Table 3-3: 

 Human Bot Discard Total 

Human a b c d 

Bot e f g h 

Discard i j k l 

Total m n o p 

Table 3-3 Cohen's Kappa computation matrix 

 The Kappa statistic is then denoted: 

  K =
Pr(agree) − Pr(chance)

p − Pr(chance)
 

Where Pr(agree) is denoted: Pr(agree)  = a +  b +  c and Pr(chance) is denoted: 

Pr(chance)  =  (
m × d

p
) + (

n × h

p
) + (

o × l

p
) 

 An algorithm was then used to compare each volunteer against each of the others 

computing the kappa statistic and the total size of their intersecting sets T. The total 

intersecting set size for the user pair was used to compute the weight, denoted: 

 w =
T

2992
 

Where 2992 had been pre-calculated to be the sum of all intersection set sizes across user 

pairs. Finally, the average weighted kappa is thus denoted: 

Kw = (w1 × k1) + (w2  ×  k2)+ . . . (wn  ×  kn) 

   The average weighted kappa in this instance had been computed to 0.637 rounded to 

3 decimal places. In (Kundell & Polansky., 2003) guidelines were presented for analysing the 

strength of agreement indicated by K values. 

From Table 3-4 it is evident that there was 

substantial agreement between the 28 

volunteers used for the classification of 

accounts. This result suggested that there 

was accuracy in the pre-classified data set 

and hence should be reliable for the machine 

learning classifiers used in section 4. 

  

  

K Strength of Agreement beyond Chance 

<0 Poor 

0 - 0.2 Slight 

0.21 - 0.4 Fair 

0.41 - 0.6 Moderate 

0.61 - 0.8 Substantial 

0.81 - 1 Almost perfect 
Table 3-4 Inter-rater agreement levels 
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4 ACCOUNT CLASSIFICATION 

 Machine learning is a branch of artificial intelligence providing the ability for 

computers to learn from a given data set without having to be hard-coded. In this report 

classification models are used to automatically determine whether any given Twitter account 

is a bot or human. This section will detail the features employed, the various steps for setting 

up the classifiers and finally demonstrate the experimentation results. 

4.1 Features 
 In machine learning, features are individual measurable variables for a given observed 

property in the data set, for example: does the animal have fur. Features are typically of 

numeric type but can also be structural such as strings or graphs. This report categorises the 

features to be classified into state-of-the-art features (those indicated to be promising in 

previous research), and new features (that have not been implemented in the past).  

4.1.1 State of the Art Features 

4.1.1.1 Number of Followers 

The number of followers was used by (Wang, 2010). During the data gathering stage 

this was collected from the user_timeline API as a numeric value.  

4.1.1.2 Number of Friends 

The number of friends was employed by (Benevenuto, et al., 2010; Chu, et al., 2012; 

Stringhini, et al., 2010; McCord & Chuah, 2011; Wang, 2010). This value was also collected 

during the data gathering stage from the user_timeline API as a numeric value. 

4.1.1.3 Follower to Friend ratio 

Follower to friend ratio was commonly used across the related works, it was 

computed based on the number of followers and the number of friends described above. Let 

Ufoldenote the number of followers a user has, Ufr denote the number of friends a user has 

and rff denote the ratio. The follower ratio was thus denoted: 

 rff  =
Ufol 

Ufr
 

In the cases where the number of friends Ufr  a user had is zero, rff was automatically set to 0. 

The result rff was always rounded to 2 decimal places. 

4.1.1.4 Tweet Source 

 (Chu, et al., 2012) identified tweet source as being one of the most reliable features in 

identifying bots on Twitter. This feature was implemented by finding the most frequent 

source across all of a user's tweets. The result was stored as a nominal data type specifying 

the most frequent source for that particular user. 

4.1.1.5 Mean URLs 

 A number of research efforts used the number of URLs that a user has tweeted, 

promising results were identified from (Chu, et al., 2012; Chu, et al., 2012; Stringhini, et al., 

2010; McCord & Chuah, 2011).  This feature was implemented as the average number of 

URLs across all of a user’s tweets. Let u denote a URL and c denote the total number of 

tweets processed, ignoring those that are identified as retweets; tweets are identified as 

retweets when prefixed by “RT” or stated so by the API. The mean number of URLs 𝜇𝑢 was 

denoted: 
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 𝜇𝑢 =
Σ u

c
 

 URLs were identified within a tweet by splitting the tweet into tokens based on 

whitespace separation. A URL was then validated against the MalformedURLException 

class. The result of the mean was rounded to 2 decimal places for consistency across features. 

4.1.1.6 Mean Hashtags 

 (Benevenuto, et al., 2010; Stringhini, et al., 2010; McCord & Chuah, 2011) employed 

the number of hashtags as a feature, again with promising results. This feature was 

implemented as the average number of hashtags across a user's set of tweets. Let h denote a 

hashtag and c denote the total number of tweets processed, ignoring retweets. The mean 𝜇ℎ 

was thus calculated as: 

 𝜇ℎ =
Σ h

c
 

 Hashtags were identified within a tweet by splitting the tweet into tokens based on 

whitespace. Each token was then matched against the regular expression, 

((?<!\w)#\w+[^\s]*), specifying that a hashtag should begin with a # and immediately be 

followed by 1 or more word characters up until white space.  The result of mean was again 

rounded to 2 decimal places and stored as a numeric value. 

4.1.1.7 Mean Characters 

 (Benevenuto, et al., 2010) looked at the number of characters per tweet, (McCord & 

Chuah, 2011) also look at the total length of a tweet. This feature was implemented as the 

mean number of characters across a user’s tweets. Let l denote the total number of characters 

for a given tweet and c denote the total number of tweets processed, ignoring retweet. The 

mean 𝜇𝑐 was denoted: 

 𝜇𝑐 =
Σl

c
 

4.1.1.8 Mean Words 

 Similarly to the mean number of characters, (Benevenuto, et al., 2010) also used the 

number of words per tweet. This feature was implemented as the mean number of words per 

tweet, across the user’s entire set of tweets. A word was identified by trimming the tweet of 

excess white space and then splitting the tweet into individual tokens. Let w denote the total 

number of words in a tweet and c denote the total number of tweets processed, ignoring 

retweets. The mean 𝜇𝑤 was calculated as: 

 𝜇𝑤 =
Σ w

c
 

4.1.1.9 Total duplicate tweets 

 (Wang, 2010; Chu, et al., 2012; Stringhini, et al., 2010; Gianvecchio, et al., 2011) 

identified that a number of spam accounts typically tweet identical contents over a period of 

time. This feature was implemented using the Levenshtein distance algorithm, similarly to 

(Wang, 2010)’s approach. The Levenshtein distance is defined as the minimum cost of 

transforming one string into another, the result is the total number of characters that differ in 

the transformation. The approach ignored any tweets identified as being retweeted as done in 
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previously described features. For every tweet t1 it was compared against the rest of a user’s 

tweets, when a tweet has been processed it was removed from the set to ensure it was not 

processed again. Whenever a distance of zero was computed, the total number of duplicates d 

is incremented. To ensure that the total was given on the same scale no matter how many 

tweets a user had in total, the result 𝑡𝑑 was converted to log10, denoted: 

𝑡𝑑 = log10(Σ d) 

4.1.1.10 Total interactions 

  The number of times a user interacted with others on the social network was a feature 

common in the work of (Wang, 2010; McCord & Chuah, 2011). This feature was 

implemented by checking for every tweet, that was not a retweet, did the user mention/reply 

to another user. User interactions denoted as i were detected within tweets using regular 

expressions: 

(?<=^|(?<=[^a-zA-Z0-9-\.]))@([A-Za-z_]+[A-Za-z0-9_]+) 

The regular expression specified that a username must be prefixed by an @ symbol and 

immediately followed by an alpha character, the final part of the username can be complete 

with alphanumeric characters. The expression also ensured that any characters before the @ 

are outside of alphanumeric range, allowing for symbols before the @. 

 Similarly to the total number of duplicate tweets the result 𝑡𝑖 was converted to log10, 

denoted: 

𝑡𝑖 =  log10(Σ i) 

4.1.1.11 Total retweets 

 The number of retweets was used by (McCord & Chuah, 2011). This feature was 

implemented by checking for every tweet t had the API marked it as retweeted or was the 

tweet prefixed by “RT”, if it was r was incremented. The total 𝑡𝑟 was again converted to 

log10, denoted: 

  𝑡𝑟 =  log10(Σ r) 

4.1.2 New Features 

 New features are those which no prior research efforts have touched upon, which will 

be introduced in this report.  The related work section had indicated that no research had 

looked into natural language processing techniques, leading this research to consider this as a 

feature. I was led to look at this as a feature as it was indicated by those who had taken part in 

the annotation process.  The volunteers were e-mailed asking for any noticeable factors 

leading them to choose between a bot or human. Feedback from this brief survey revealed a 

number of interesting characteristics for example:  

● “Bots always tweet about the same thing?” 

● “Bots often exhibit fixed patterns in their spelling/grammar whereas humans are less 

predictable.” 

● “Bots typically showed no emotion, whilst a human may have a variety of 

positive/negative tweets.” 

● “Tweets from bots often contained a link / URL, sometimes this was duplicated” 

The results from this short, informal survey revealed great promise in the belief that natural 

language processing could offer significant improvements on previous research efforts. Based 
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on these suggestions, six new features were implemented 4 of which can be considered 

natural language processing (mean and standard deviation of tweet sentiment, hashtag context 

and spelling) with two being extensions upon previously researched features (use of duplicate 

URLs and default profile picture). 

4.1.2.1 Sentiment 

 The survey revealed that a number of volunteers believed bots exhibited regular 

patterns in the way that they communicate, as previously indicated by (Gianvecchio, et al., 

2011). Some volunteers believed that this pattern was particularly evident in the case of 

emotion. For example, humans would have a mixture of positive and negative emotion across 

their tweets whilst bots are typically consistently negative for example publishing news 

articles.  

 The sentiment feature set was implemented using the Stanford CoreNLP (University 

of Stanford, n.d.) third-party Java library. Stanford CoreNLP is a natural language processing 

framework providing ease in implementing language analysis of text. Prior to version 3.3.0 of 

the framework sentiment analysis had not been included, with the current version being 3.3.1 

(introduced in 2014), making this feature very cutting edge research.  

To implement sentiment analysis the third-party library must first be imported into the 

java class path. To implement the sentiment analyser firstly a class was created taking a string 

of text (the tweet) into the constructor. Once the instance had been initialised a separate 

method performed the analysis. This method first created a new instance of 

StanfordCoreNLP specifying the properties to be used, here it was specified that sentiment 

analysis was to be used and the variable ‘ssplit.isOneSentence’ was set to true to ensure any 

new lines/whitespace in the tweet did not break the analysis early. Next, the 

CoreAnnotations.SentencesAnnotation class was used to produce a parse tree of the tweet, 

the result being stored as a CoreMap. The SentimentCoreAnnotations.AnnotatedTree class 

was then used to produce a tree identifying the sentiment for each token of the string. Finally, 

the RNNCoreAnntoations class was used to calculate the root sentiment of the tree returning 

the sentiment class as an integer. This integer can be one of 5: 0 (very negative), 1 (negative), 

2 (neutral), 3 (positive) and 4 (very positive.) 

 The sentiment feature set was broken down into two separate calculations: 

1. Mean sentiment 

The mean was calculated by iterating over all a given users tweets, any tweets 

that were identified as retweeted by the API or any tweets that began with the 

term “RT” were automatically ignored. The tweets that weren’t ignored, are 

passed into the analyser class to compute the sentiment score s, which was 

then incremented to the total t. A log of how many tweets were processed was 

also incremented, c. The mean,  𝜇𝑠𝑒, is denoted: 

  𝜇𝑠𝑒 =
Σs

c
 

The result of this being rounded to the nearest whole number (a sentiment 

score is a whole number between 0 and 4.) 

2. Standard deviation of the sentiment 

The standard deviation of the sentiment was calculated based on the 

previously determined mean for the given user. For each tweet of the user, 
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given the mean, m, and the sentiment of the tweet, s, a count, c, of how many 

tweets have been iterated was stored along with the sum calculation between s 

and m. One would anticipate that a low standard deviation would indicate a 

predictable pattern in an account sentiment and a high value would be less 

predictable, likely the case for humans. The standard deviation σ was rounded 

to two decimal places and is denoted: 

 σ = √Σ(s − m)
2

c  

4.1.2.2 HashTag context 

 (Benevenuto, et al., 2010) identify spammers who are aggressive in their strategy by 

posting malicious contents into trending topics. A quick study of the pre-classified data set 

and browse through the current Twitter trending topics revealed that there are a number of 

users who tweet unrelated contents to the given topic. This presented the idea of identifying 

the context of a tweet and comparing this in relation to the trending topic term. For example: 

given the tweet “Cheap viagra 70% off sale, follow back for details!! #WorldCup” it is 

clearly evident that this is completely unrelated to the #WorldCup football trending topic. 

 Previous work such as that from (Stringhini, et al., 2010) and (Chu, et al., 2012) use 

language analysis to find semantic similar of tweets. Building on this, this feature is 

computed as follows: let h denote a hashtag in a tweet and t denote a term within a tweet. The 

similarity was then computed for every hashtag, h, against every term, t, the result of this was 

averaged to produce the mean similarity for that particular tweet. This could then be further 

averaged out across all of the users’ tweets. The average tweet context against hashtags  𝜇ℎ𝑐 

across all of a user's tweets is thus denoted as: 

  𝜇ℎ𝑐 =
Σ (Σs ÷ (Σt + Σh))

c
 

One would anticipate this would produce a low similarity if the hashtags do not match the 

content and a high similarity if they do match the contents. 

 Before the similarity of terms and hashtags within a tweet could be computed pre-

processing must occur to disregard unnecessary information. In order to build up an accurate 

profile of the user, any retweets were identified by tweets prefixed with “RT” or where the 

API had previously specified it as retweeted and as such disregarded. The tweet was then 

split into individual terms by separating based on whitespace. Any term in the set that was 

identified as a username or URL was removed from the set. If the term was prefixed by a 

hash character it was identified as a hashtag and stored in a set, with all other terms being 

stored in a separate set; in both cases any punctuation was removed. Testing of this pre-

processing revealed that a number of trending topics were composed of camel cases (multiple 

words separated by capital.) This posed the problem that these words could not be found 

within the WordNet database. In the occasion where camel cases were identified these were 

separated into individual hashtags.   

The similarity analyser is implemented using WordNet (Fellbaum, 1999) based 

measures. In order to interface with the WordNet database three third-party Java libraries are 

used, these being the MIT Java Interface to WordNet (Finlayson, 2013) and WordNet 
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similarity for Java13 (ws4j); a requirement of this library is that JawJaw14 must also be 

included in the class path. Once the necessary libraries have been imported an analyser class 

was created to compute the similarity between two words. Firstly, WordNet is organised by 

synonym sets so (Finlayson, 2013) was used to find the root meaning of the provided word. 

Secondly, the implementation of the Resnik similarity measure provided by ws4j is 

initialised. Using the RelatednessCalculator class provided by ws4j, POS pairs were iterated 

over to find whether a word was a verb, noun, or adverb. Once the word had been found a 

synonym set was returned as a list for each word being compared. The synonym sets were 

then iterated over comparing the relatedness of each word in the set. On each iteration the 

score was compared against the previous until a maximum was found.  

4.1.2.3 Spelling errors 

 Feedback from the survey of participating volunteers had revealed that bots exhibited 

regular patterns in their spelling in that they were typically grammatically correct and had no 

spelling errors. In comparison, humans would use abbreviations and typically be much less 

grammatically correct thus less formal in their communications.  

 This feature calculated the mean number of spelling errors across a user's set of 

tweets. Let t denote a tweet and sp denote the number of spelling errors found for t. The sum 

of sp was calculated across all of a user's tweets and then divided by the total number of 

tweets that were processed c. Thus the mean  𝜇𝑠𝑝𝑙 was denoted:  

 𝜇𝑠𝑝𝑙 =
Σsp

c
 

The result was rounded to two decimal places for consistency with other features. 

 The spelling analyser was implemented using a third-party Java library known as 

Jazzy15  which analyses bodies of text for spelling and grammatical errors. In order to 

interface with Jazzy it must first be included into the Java class path, as with all other external 

libraries. Prior to passing any data into the library the tweets are pre-processed. Similarly to 

the hashtag contexts, any tweets that are retweeted are disregarded, likewise usernames, 

hashtags and incomplete URLs are stripped from the tweet. Testing revealed that a number of 

words such as “tweet” weren’t recognised by the dictionary so these were also removed. 

Finally using the default English dictionary provided by Jazzy the analyser initialises a hash 

map of the dictionary and new instance of the spell checker. The tweet is then simply passed 

into the checkSpelling() method which returns the number of errors in the tweet. 

4.1.2.4 Duplicate URLs 

 To further the work of (Benevenuto, et al., 2010; Chu, et al., 2012; McCord & Chuah, 

2011) who count the number of URLs per tweet and also check the URL against blacklists, it 

was believed that duplicate URLs could be a key factor in determining bots. Looking through 

the pre-classified data set it was evident that a number of accounts did post duplicate URLs 

particularly in the case of updates from gaming apps.  

                                                 

13 Shima, H., 2013. ws4j - WordNet Similarity for Java - Google Project Hosting. [Online]  

    Available at: https://code.google.com/p/ws4j/ [Accessed 15 3 2014]. 
14 Shima, H., n.d. jawjaw - Java Wrapper for Japanese WordNet - Google Project Hosting. [Online]  

    Available at: https://code.google.com/p/jawjaw/ [Accessed 15 3 2014]. 
15 Idzelis, M., n.d. The Java Open Source Spell Checker. [Online]  

    Available at: http://jazzy.sourceforge.net/ [Accessed 15 3 2014]. 

https://code.google.com/p/ws4j/
https://code.google.com/p/jawjaw/
http://jazzy.sourceforge.net/
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 Detecting URLs was implemented similarly to the above described features in that 

tweets detecting as retweets were disregarded. The tweet was then split into its individual 

tokens separated by whitespace. Each token was then checked to see if it was a valid URL 

using the MalformedURLException class, and if it was it was added to set. Further iterations 

then checked to see whether the valid URL token already existed within the set, if so the total 

count t was incremented. Finally,  𝑡𝑢 was converted and stored as log10to represent the total 

on the same scale regardless of the number of tweets per user: 

 t𝑢 = log10(Σ t)   

4.1.2.5 Default profile picture 

 (Wang, 2010) indicated that the data gathering process was performed against users 

who have a custom user icon. Quick analysis of the pre-classified data set revealed that a 

number of the accounts that had been identified as bots had the default profile picture set, 

whilst the vast majority of humans had set it to something personal to them.  

 During the data gathering stage the user_timeline API returns whether a given account 

at that moment in time has the default profile icon currently set, this was returned as a 

boolean value. Due to this value already being stored in the data set it was simply set as a 

binary feature whereby 1 indicates that an account does have the default profile picture and 0 

does not.  
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4.2 Implementation 
 The implementation of the classification section of this report made use of the Weka 

machine learning tool set (Hall, et al., 2009). Weka is a collection of pre-built machine 

learning algorithms, providing a framework for classification, regression, clustering and 

visualization. Amongst the provided Java API, Weka also provided a native client for ease of 

use in small-medium scale machine learning tasks. This report made use of the native client 

for all machine learning processes. 

4.2.1 Constructing the ARFF file 

 The Weka client required the construction of an ARFF file (Attribute Relation File-

Format.) The ARFF file is an ASCII text file describing the list of instances sharing a set of 

attributes/features. The file is composed of a header describing the set of features and a body 

containing comma delimited data, known in Weka as instances where each new line marks 

the start of a new instance. In this implementation the ARFF file was produced automatically 

based on an interface to the database housing the pre-classified data and a configuration file 

which stated which attributes to include in a given instance.  

Appendix G: Class Diagram illustrates that the implementation was composed of 3 

key parts: getting the pre-classified data from the database, pre-processing the data into the 

features described in section 4.1 and then finally outputting the internal Java structures into 

the appropriate ARFF file format.  

 The database handler makes use of the MySQL JDBC16 third-party library to access 

the pre-classified data on a separate, remote, machine. As with the earlier described libraries, 

this must also be imported into the class path. Once imported, the set up required that the 

database access details be provided to the DriverManager class. If the driver was able to 

successfully connect, a query was made to the database to gather all of the pre-classified data 

including both user details and tweets. Each row of the returned ResultSet was then iterated 

by creating a User object which housed account details and also an array of Tweet objects for 

each of the users tweets. 

 The pre-processor contains a list of static methods for computing the features 

described in section 4.1. The first step towards building the ARFF file involved computing 

the values and storing these in a Java data structure. The chosen data structure was an 

ArrayList of maps, where each item in the ArrayList was an instance or one row of individual 

user data. A TreeMap with an Integer key and Object value was used for each item. The 

integer key corresponds to the ID representing the attribute from the configuration file. For 

example, at ID 0 existed the total number of followers for each user. The configuration file 

contained a list of Weka Attribute classes, specifying whether the data type is numeric or 

nominal. All attributes had a numeric value except for the tweet source and class which were 

of nominal type.  

 The final stage involved converting the ArrayList of TreeMaps into the required 

format for the ARFF file. The implementation of this involved the creation of a custom class 

known as the “ArffBuilder”. This class takes the attributes specified in the configuration file 

and first build a FastVector consisting of each attribute to build the header for the ARFF file. 

Secondly, for each item of the ArrayList the TreeMap would be found. Furthermore, the 

                                                 

16 MySQL, n.d. MySQL :: Download Connector/J. [Online]  

Available at: http://dev.mysql.com/downloads/connector/j/ [Accessed 15/3/2014]. 

http://dev.mysql.com/downloads/connector/j/
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TreeMap would then be iterated over using the integer key to find the associated attribute in 

the configuration file. Once the attribute had been found it would determine whether it is of 

numeric or nominal type. If the value was nominal the value would simply be stored in a 

result array of doubles, otherwise the list of nominal types specified in the configuration file 

would be retrieved. The returned nominal types would then be searched to find the value at 

the current position in the TreeMap. For each iteration the resulting double array would be 

stored in an array of instances. Upon completion of iteration through the ArrayList the 

instances variable would be returned and printed to console. Weka nicely provided a 

toString() method for formatting the Instances object into the requirement format for the 

ARFF file. 

4.2.2 Using Weka Explorer 

 The Weka Explorer is included as part of the Weka tool set (Hall, et al., 2009). The 

program provides ease of use in running machine learning algorithms such as classifiers, 

clustering and visualization on a given ARFF file. Once the ARFF file had been computed it 

was very easy to begin experimenting. The “Preprocess” section allowed one to import the 

ARFF file and select which features are to be used in later machine learning analysis.  

 The “Classify” section of the Weka Explorer could then be used to apply 

classification algorithms to the provided data set. The Weka Explorer automatically disables 

classifies that are unavailable based on the type of data imported. In this report Bayes Net, 

Naive Bayes, Random Forest and SMO classifiers are employed to compare their differences 

in performance. Previous research efforts such as (Chu, et al., 2012) and (Benevenuto, et al., 

2010) have solely focused on one particular type of classifier; it is possible that others may 

perform better under certain feature sets. 

  In this report all the classifiers are computed using 10-fold cross validation. In each 

test case, the sample is partitioned into 10 equal size subsamples. Of the 10 subsamples, 1 

was retained as validation data for testing the classifier and the remaining 9 were used as 

training data. The cross-validation process was then repeated 10 times with each subsample 

being used exactly once as the testing data. 

Once the 10-fold cross validation process had completed, Weka Explorer outputs the 

results of the classifier detailing accuracy by class (Human/Bot). For evaluating the accuracy 

of the classifier, the weighted F-measure was used. The F-measure is a standard statistical test 

for binary classification systems, combining both the precision and recall with equal weights. 

Given the confusion matrix in Table 4-1: 

 

The F-measure is denoted as: 

  F1  = 2 × (
P × R

P + R
) 

Where the precision is denoted 𝑃 =  
𝑎

(𝑎+𝑐)
, and the recall is 𝑅 =  

𝑎

(𝑎+𝑏)
. 

 Condition (as determined by Gold Standard) 

Bot Human 

Test outcome Bot a b 

Human c d 
Table 4-1 F Measure confusion matrix 
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4.3 Experimentation Results 
 This section summarises the results of each classifier under a given set of features. 

The features have been subdivided for comparison, into distinct sets these being: state-of-the-

art, user-based, content-based and new features. The section will finish with all of the 

features combined and an optimal feature set having removed any that are poorly performing. 

4.3.1 State-of-the-art vs New Features 

The state-of-the-art feature set included those eleven features that previous 

researchers had identified to return promising results, a list of these features can be found in 

section 4.1.1. In comparison, the new feature set included those six features that have been 

presented in this report, described in section 4.1.2. 

  F-Measure 

 State-of-the-art 

Features 

New Features 

Classifier 

Bayes Net 0.915 0.848 

Naïve Bayes 0.88 0.846 

Random Forest 0.922 0.819 

SMO 0.913 0.845 
Table 4-2 State-of-the-art performance vs. New Features 

Table 4-2 shows the performance of the state-of-the-art feature set against those 

introduced in this report. Initially inspection of the results showed that there had been a clear 

decline in the F-measure for those newly introduced. This being said, (Benevenuto, et al., 

2010; Chu, et al., 2012) identified that smaller set of features can limit the accuracy as in the 

case of those newly introduced.  

In the case of the state-of-the-art features Random Forest had the highest accuracy at 

92.2%, whilst Naïve Bayes was much further behind on 88%. Random Forest is an ensemble 

classifier that combines the decisions together of several classification models, thus making it 

generally more robust to noise. In comparison, Naïve Bayes is a simple probabilistic 

classifier. The extreme difference between these two F-measures could suggest that the state-

of-the-art features carry a lot of noise.  

 The features introduced in this report had much lower accuracies than those seen in 

the state-of-the-art. In this occasion, all classifiers had very similar accuracies however Bayes 

Net and Naïve Bayes exhibited the highest. In comparison to the state-of-the-art Random 

Forest exhibited the lowest accuracy. This could suggest that the newly introduced features 

were much less noisy and were truly independent on one another; Naïve Bayes makes the 

naive assumption of independence between feature pairs. 

4.3.2 User-based Features vs. Content-based Features 

User-based features consist of those that were limited to the properties of an account; this 

feature set included a mixture of those that were state-of-the-art and those that were being 

introduced. Out of the described features in section 4.1, the following were identified as user-

based features:  

 default profile picture  number of friends 

 number of followers  follower to friend ratio 

Content-based features consist of those that are reliant on content provided by the user, thus 

tweets; again, this feature set includes a mixture of those that were state-of-the-art and those 
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that were being introduced. Out of the described features in section 4.1, the following were 

identified as content-based features: 

 duplicate URLs, 

 source of tweets,  

 mean URLs,  

 mean hashtags,  

 mean characters,  

 mean words, 

 total duplicate tweet,  

 total interactions,  

 total retweets,  

 sentiment,  

 hashtag context,  

 spelling errors 

 

  F-Measure 

 User-based Features Content-based 

Features 

Classifier 

Bayes Net 0.835 0.925 

Naïve Bayes 0.471 0.919 

Random Forest 0.808 0.929 

SMO 0.482 0.934 
Table 4-3 User-based feature performance vs. Content-based features 

 Table 4-3 compared the performance of user-based features against content-based 

features. Initially it was clear that content-based features performed much better than user-

based, with accuracies upwards of 90% whilst user-based features fell as low as 47%. 

Interestingly, in the case of user-based features Bayes Net and Random Forest had an 

accuracy almost 30% higher than SMO/Naïve Bayes. As mentioned in section 4.3.1 the poor 

accuracy in this occasion could be put down to large amounts of noise in the data set which 

would explain the improved accuracy of Random Forest/Bayes Net. 

 In the case of content-based features, SMO exhibited the highest accuracy of 93.4%, 

with Random Forest not far behind on 92.9%. These results could suggest that content-based 

features provide higher information gain to the classifier than those of user-based features 

and were thus more powerful. This being said, the twelve content-based features against 4 

user-based features could have affected the result in that much more information is 

contributed in the case of content-based features.   
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4.3.3 Combined Features 

 The combined feature set combined all those described in both new and state-of-the-

art features sets, a list of which can be found in section 4.1.1 and 4.1.2.  

Classifier  F-Measure 

Bayes Net 0.926 

Naïve Bayes 0.905 

Random Forest 0.924 

SMO 0.93 
      Table 4-4 Performance of all features combined 

 Table 4-4 showed that SMO yielded the highest accuracy when all of the proposed 

features from section 4.1 were combined. Interestingly, when this is compared against the 

results presented in Table 4-3 the accuracy of all results has decreased except for Bayes Net 

where there had been a marginal increase. In case of the SMO, that was previously the most 

accurate for content-based features, the accuracy has decreased by 0.04%. This confirmed 

that user-based features consisted of a lot of noise. Likewise, more features doesn’t 

necessarily have a positive effect on the accuracy. 

 When comparing the combined feature set against that of the state-of-the-art in Table 

4-2 it was noted that there had been a clear increase in the accuracy, despite potentially noisy 

user-based content. In the case of Bayes Net, Naïve Bayes and SMO there had been an 

increase on the state-of-the-art of approximately ~1%. This increase suggested that the newly 

introduced features were of high information gain to the classifier and hence having a 

positive effect on the accuracy. Similarly, in the case of Random Forest a marginal increase 

was seen but suggested that noise in the state-of-the-art features was limiting the growth of 

the accuracy.  

4.3.4 Best Model Selection 

 In order to calculate an optimal feature set, the “Select Attributes” section of the 

Weka Explorer was used. This section of the Weka tool set allowed me to evaluate attribution 

selection against various algorithms. In this implementation the InfoGainAttributeEval 

algorithm was used to evaluate the worth of each attribute by measuring the information gain 

with respect to the class (Human/Bot). The search method was then set to Ranker to order 

attributes by their individual evaluations.  

 The results of ranking the attributes by information gain are indicated in Table 4-5. It 

was most evident that the tweet source contributed highly to classifying accounts as 

Humans/Bots. Throughout the pre-classification this became clear with a number of 

volunteers suggesting that bots would typically post from applications, whilst humans would 

be consistently from web/mobile devices. (Chu, et al., 2012) also state that the tweet source 

contributes the most information gain towards the classifiers. The rest of the results sat 

around the 0.4 range, all of which of are numeric values as opposed to the nominal type for 

the tweet source. For the 5 numeric types, box plots are illustrated in appendix B highlighting 

the difference in values between both classes (Human/Bots). 
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 Table 4-5 shows that the total number of 

user interactions is the second highest attribute for 

information gain. Appendix B.4 illustrates the 

sample of results for each user comparing those 

classified as humans against bots. The box plot 

clearly illustrates that bots typically interact much 

less with other users than humans, with a 

noticeable crossover occurring above 1.0. A 

possible reason for this crossover is that some 

automated accounts are malicious and deliberately 

target users for spam. In this instance multiple 

automated accounts were used to mention the 

same user thus spamming the target with 

notifications. 

Appendix B.1 illustrates the mean number of URLs for both humans and bots. It is 

clearly evident that bots typically post many more URLs than humans. It is notable that in the 

case of humans there are extreme cases where a number of accounts are identified as posting 

a large amount of URLs. 

Appendix B.5 illustrates the total number of retweets. From the graph it is evident that 

around 50% of a humans tweets are retweets, though across the data set there are cases with 

zero retweets. In the case of bots an interesting case is presented with a large proportion of 

extreme cases with large numbers of retweets. However, the majority case for bots is that 

they typically do not retweet other user content. The tweet-source identifies this in that a 

large proportion of the accounts identified as bots simply scrape content from the web as 

opposed to searching the social network for data to retweet. 

Appendix B.3 shows the number of friends across humans and bots. The graph 

presents the case that bots typically do not have any friends, though there are extreme cases 

where they have a large proportion. This is typical in the case where the account is 

legitimately identified as a bot, and has a useful purpose. On the other hand, it is evident that 

humans typically have a number of friends in the range of a couple of thousand; as one would 

expect there are extreme cases for popular accounts. 

Appendix B.2 illustrates the newly implemented standard deviation of the sentiment. 

The graph illustrates a very clear separation between bots and humans that has not been seen 

in the previous illustrations. Bots typically have a much lower sentiment suggesting that 

they’re consistent, whilst humans have a slightly higher value indicating less-predictability. 

 The optimal feature set was decided upon by removing those attributes that have a 

ranking below 0.1. The values that were thus removed include: total duplicate tweet, total 

followers, total duplicate URLs, hashtag context and default profile picture. The remaining 

features were included in the optimal feature set, these are detailed below ordered by 

information gain: 

1. Tweet source 

2. Total interactions 

3. Mean number of URLs 

4. Total retweets 

7. Follower to friend ratio 

8. Mean number of hashtags 

9. Mean number of spelling errors 

10. Mean number of characters 

11. Mean sentiment of tweets 

Information Gain Attribute 

0.7136 Tweet Source 

0.4331 Total number of 

interactions 

0.4296 Mean URLs 

0.4109 Total Retweets 

0.4076 Total friends 

0.4009 Standard deviation of 

the sentiment 

Table 4-5 Attributed ranked by information gain 
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5. Standard deviation of tweet 

sentiment 

6. Mean number of words 

 

  

 

 

 

Table 4-6 shows that there is a clear increase in the accuracy of the classifiers when 

removing those believed to provide low information gain. When these results were compared 

to Table 4-4, an increase was seen across all classifiers. The most notable increases were seen 

in the case of Naïve Bayes and Random Forest, with only marginal increases of 0.01% for 

Bayes Net and SMO.  

From Table 4-6 it was clear that Naïve Bayes had seen a steady increase was seen 

across sections 4.3.1 – 4.3.3. Originally in the state-of-the-art Naïve Bayes had an accuracy 

of 88%, this increased to 90.5% when the features were combined. Once the noisy or features 

of low information gain were removed the highest accuracy was seen, improving upon that of 

(Wang, 2010). Interestingly, Naive Bayes sees a further increase when removing the next 

lowest information gain attribute, mean number of words, increasing to a value 0.934. 

However, removing this feature had a knock on effect on other classifiers seeing a decrease in 

the result. If further features were removed (information gain >0.1) the F-measure scores 

would gradually decline. 

Across sections 4.3.1 to 4.3.3 Random Forest had typically performed best or close to 

best. In the optimal feature set an each an increase of 0.16 was seen from the results 

presented in Table 4-4. This result was a clear improvement upon the state-of-the-art and 

confirms that features indicating account patterns such as the standard deviation of tweet 

sentiment contribute highly to the information gain of a classifier. This result was an 

improvement upon those seen in the earlier research of (Wang, 2010) and (Tavares & Faisal, 

2013) who both try to detect bots on Twitter. 

 

  

Classifier  F-Measure 

Bayes Net 0.927 

Naïve Bayes 0.926 

Random Forest 0.94 

SMO 0.931 

Table 4-6 Optimal feature set performance 
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5 CONCLUSION 

5.1 Review of the Aims 
 This report began with the aim of detecting bots on Twitter using machine learning 

approaches. It was initially hoped that an existing data set would be available, however it 

became apparent that a number of existing data sets were not suitable for the scope of this 

study. The report progressed to build a large data set from scratch including Twitter account 

details and 200 of their most recent tweets.  

An annotation system was produced to allow members of the public to classify 

accounts as bots or humans. Here an inter-rater agreement of 3 users was found to improve 

upon previously built data sets, likewise Cohen’s Kappa was used to prove the strength of 

inter-rater agreement. Throughout the data gathering process, volunteers posed questions that 

led to the introduction of new features presented in this report. If this process were to be 

repeated, a larger set of volunteers would help to diversify those annotating the accounts but 

also overcome the fact that in this instance, 2 users labelled the majority of the data set, 

which could affect the inter-rater agreement. 

New and state-of-the-art features are compared in this report against four traditional 

classifiers. The results yielded from this study are an improvement upon early research in this 

field, but they also have similarities to recent efforts. Natural language processing features 

were introduced with the standard deviation of tweet sentiment proving to be of high 

information gain to the classifiers. That being said, a number of other natural language 

processing techniques were also implemented in the form of the mean across a user’s tweets. 

It is identified that the standard deviation of features proves to be of higher information gain 

than using the mean.  

5.2 Future Work 
 It is hoped that future work in this field would improve upon the analysis of 

tweet context against hashtag terms. A number of problems were presented when processing 

this feature in that hashtags terms do not typically exist within dictionaries, for example in the 

case of multiple words joined together in lower case. Similarly, (Tavares & Faisal, 2013) 

managed to successfully detect bots based solely on ‘timing entropy’. Given more time, this 

report would look to implementing an entropy based component for the timing and prediction 

of tweets to help further build a profile of a user and their predictable, or not so predictable, 

actions. 

(Chu, et al., 2012; Tavares & Faisal, 2013) states that there are multiple types of bot, 

therefore I envisage future work would look to characterise those accounts detected as bots 

into distinct categories. In the proposal bot taxonomies had been identified, future work in 

this field may look to categorise accounts detected as bots as it is possible that a number of 

accounts could be a mix of human/bot (cyborg). Furthermore, the pre-classified data set could 

be improved upon by increasing the rate of agreement between volunteers thus improving the 

overall reliability of the results. 

5.3 Closing Comments 
 From this report I have learnt to use statistical techniques such as Cohen’s 

Kappa to prove the strength of agreement between multiple user pairs. Also, how to deploy 

machine learning classifiers for training against a data set using the Weka native framework. 

Likewise, the effects that different numbers and types of features can have on the accuracy of 

a classifier. In most occasions the Random Forest classifier proved most resilient to noise 
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often yielding the highest result. 

To conclude, this report has built upon previous research efforts of others, whilst 

contributing the introduction of natural language processing based features. A data set of 

1,000 users is made available to the community that has proven substantial inter-rater 

agreement, in the identification of bots and humans on Twitter. A classifier is then presented 

implementing new and state-of-the-art features yielding slightly better results than previously 

seen in similar research efforts. The information gain is also contributed for the feature set 

indicating which features are best in this particular implementation.  
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APPENDIX A 

SELECT `screen_name`  

FROM `users`  

INNER JOIN `tweets` ON `tweets`.`user_id` = `users`.`user_id`  

WHERE `total_friends`/`total_followers` < 0.2 AND `total_friends < 10  

GROUP BY `tweets`.`user_id`  

HAVING COUNT(*) >= 200 
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APPENDIX B.1: BOX PLOT OF THE MEAN NUMBER OF URLS 
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APPENDIX B.2: BOX PLOT OF THE STANDARD DEVIATION OF 

THE SENTIMENT 
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APPENDIX B.3: BOX PLOT OF THE TOTAL NUMBER OF FRIENDS 
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APPENDIX B.4: BOX PLOT OF THE TOTAL NUMBER OF USER 

INTERACTIONS 
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APPENDIX B.5: BOX PLOT OF THE TOTAL NUMBER OF 

RETWEETS 
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APPENDIX C: LOGIN INTERFACE 

 

 

APPENDIX D: REGISTRATION INTERFACE 
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APPENDIX E: HELP GUIDE INTERFACE 
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APPENDIX F: ANNOTATION INTERFACE 
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APPENDIX G: CLASS DIAGRAM 
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APPENDIX H: PROPOSAL 

Social Bot Identification on Twitter 

  

Kieran Brahney 

  

Abstract. Social media is becoming an increasingly popular area 

in the public domain, with this comes bots trying to reach out to 

these audiences. This report presents a proposal for a project 

identifying between humans and robots on the social networking 

platform, Twitter with increased focus on bot taxonomies. The 

aims of this project are to produce a system that utilises existing 

machine learning and pattern analysis libraries to accurately 

differentiate these two types of user. Specifically the complete 

system will have the functionality to analyze a given dataset of 

user tweets and pull out which are robots, then perform further 

statistical tests in the form of outputted graphs about the dataset 

for the user. The project will involve two phases: gathering of the 

datasets and building the analysis software. Expected outcomes of 

the proposed system will include the ability to accurately and 

efficiently detect bots in a micro-blogging environment.  

1 Introduction 

       Online social media hit the world by storm in the early 2000’s with sites such as 

Friendster and MySpace, ever since then social media has been on the increase and only 

recently has it reached a truly global audience. Twitter, the network this report focuses on, 

was founded in June 2006 as a micro-blogging platform. As with all computer networks 

malicious users and spam gain prevalence as they become more popular due to the social  

reach one can get through these new real-time mediums. 

         The aim of this report is to design and implement an analysis system to accurately and 

efficiently determine between bots and humans on the social network. The system should 

allow for a user to review a given Twitter users profile using a machine learning and 

statistical analysis techniques to determine bot or human. Numerous types of bot exist 

including malicious spam, company marketing and impersonation bots. The proposed solution 

aims to determine type of bot and provide a risk score of the account through an easy to use 

yet comprehensive interface. 

         This report covers the background how Twitter works in comparison to other social 

networking mediums, the effects of bots on the social network and the implications of the 

resulting analysis software. Before detailing the proposed system existing research methods 

will be scrutinised along with previous data collection methods. The proposed system section 

covers the details of how the system could be developed, it’s features and how the end 

product can be evaluated. This includes details the main areas of development and any 

resources required to complete the development. Finally a Gantt chart illustrating a 

breakdown of the tasks involved to complete the system from initialisation to completion.   
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 2 Background 

       Twitter is a micro-blogging service allowing members to make, short, 140 character 

long  updates. The service allows a modified interpretation of existing social networks using 

an opt-in style whereby one can be followed by ‘n’ people but one chooses who they follow 

(receive updates from) – those of whom there is a 1 – 1 relationship are considered friends. 

Other differentiating features of the service include the introduction of hash tags whereby 

uses can tag tweet content to a chosen category, categories used by multiple users are then 

considered trending in a real-time feed. 

         As of February 2013 Twitter was announced [8] the fastest growing social network 

with a 40% growth in accounts between Q2 and Q4 of 2012, with a total of 288 /485 million 

active accounts. With growth comes spammers, whom have various motives such as wanting 

to publish malicious links, automatically spread news and promotions but also hijack trending 

topics. Twitter has tried a number of techniques to limit spam such as the “Report as spam” 

feature on tweets, but regularly legitimate accounts are caught up in their actions. 

         Many Twitter users are unaware of the fact that a large proportion of the users they 

interact with on the social network are in fact bots. A study identified in [4] analyzed a 

selection of the leading global brands for traits similar to those of bots, which revealed 46% 

of whom were just that. Companies are increasingly moving to Twitter to take advantage of 

the fastest growing social network, thus improving marketing reach but also providing 

customer interaction on a much more personal level along with increased response times to 

customer queries. 

2.1 Bot Taxonomies 

         A number of bot taxonomies exist on the web ranging from your traditional 

spam/malicious bots attempting to spread malware, company bots whose aim is to assist and 

automate their customer relationship management, and impersonation of high-profile figure 

bots each of which possess slightly different feature sets. 

2.1.1 Company bots 

Companies make extensive use of bots on social networks, as evidenced in [4], for 

help maintain their customer relationship management. Typically these bots will consist of 

human written message triggered in reply to the given context of a customer enquiry. They 

can also be used for advertising campaigns by regularly making discounts for products. 

Though these can be considered a good form of bot, another exists within the scope of 

companies which can be used to boost hash tags into trends topics in order to increase 

advertising campaign reach. The other being used against competitor companies to provide 

bad marketing through trending topics or spamming bad reports. 

2.1.2 Malicious/Spam bots 

         Malicious bots have existed on the internet for years in the form of zombies, that 

spread malware. The increase of social media usage has improved the social reach for 

malicious bots to spread. These bots would typically spread a HTTP link to malicious 

software, phishing pages or counterfeit products. 

2.1.3 Impersonation bots 
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         Impersonation of high-profile users is another problem on Twitter, whereby bots are 

used to gather a user’s tweets then rebuild and post them appearing as that user. This can be a 

key problem for social engineering attacks. Twitter attempted to solve this problem a system 

introduced in 2009 [5] that reviewed high-profile accounts and marked them as ‘verified by 

twitter’ though the system is never foul proof (review process takes time.) 

2.2 Related Work 

         Spam detection and identifying robots has been studied for a long time, with 

increasing focus on social media. Existing approaches to identifying bots on Twitter have 

focused mainly on analysing a given users trends over a period of time. In [1], Alex Hai 

Wang proposes two solutions using graph-based and content-based analysis to determine bots 

on Twitter. Graph-based analysis compares the number of friends (you both follow each 

other), follower ratio and the number of followers for a given account. For example you 

would be considered a bot should you have a small follower to following ratio. Content-based 

analysis makes use of the Levenshtein distance comparing the differences between tweets, 

though he only looks for identical tweets (distance of zero.) For example you would be 

considered a spam bot should you have a number of identical tweets. 

         Benevenuto, et al. [2] take a slightly different approach based on user trends and 

trending topics. Section 2 explained the emergence of trending topics and their exploitation, 

with this you can analyse trends of hash tag meaning in relation to tweet context. For example 

a typical spam tweet might be “$10.12 Viagra #will.i.am” whereby it would be put into the 

trending feed though completely unrelated. User trends involved the analysis of tweets across 

the timeline showing the number of URLs or hash tags within tweets, how often they interact 

with other users (through re-tweeting, replying), length of tweets, number of users replied to 

within a tweet and so on. Most importantly analyzing the context of a tweet in relation to the 

time of day as noted in [3] can be a clear indicator of whether a user is human or not. A 

typical human would have a pattern of how often they post throughout the week, the times of 

day they post at and typically a close circle of people they interact. 

         In [4] a slightly different approach is taken in identifying the humans and thus those 

left behind are the bots. This technique included features such as whether the profile contains 

an image, the amount of punctuation used, the context of the details in the profile description.  

2.3 Implications 

         The importance of this report is evidenced through trending topic hijacking whereby 

one can quite rapidly make bad press for a competitor company, or crash financial institutions 

through mass panic acts. Likewise, spam detection in the e-mail world has been tackled for a 

years, but social media is becoming a modern form of e-mail interact with no limitations, at 

current, for spam. Detecting bots is the main aim of this report, how an entity acts on the 

returned analytical results is down to them. 

 3   Data Collection 

         To evaluate bot detection methods on Twitter an initial data set, with a clear outline of 

which are bots and humans, will be provided from previous research attempts into this area. 

Using said data experiments including but not limited to language analysis will be carried out 

in order to build up an accurate picture of the types of features existing bots possess in 
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comparison to humans. The results of which can be used to determine models for the machine 

learning tasks of the analysis system.         

Upon completion of initial analysis another data set should be gathered using other 

means. Data collection includes making use of fake account companies (Section 3.2) Once the 

data set has been assigned to the test Twitter account by the company, the Twitter API will be 

used to collect detailed information about user profile information, user’s timeline of tweets, 

number of followers and following along with further collecting datasets from the accounts 

following the ‘fake’ ones assigned by the company. Thus ultimately the algorithm will span 

outwards, stopping at a given depth. 

Tweets collected by the algorithm will be stripped of tags usually associated with 

Twitter such as “RT” (standing for re-tweet), “@username” (replying to another user) and 

“#hashtag” (tagging tweet to a context.) Hash tags and re-tweets will be individually stored in 

a separate array. 

3.1 Twitter API 

         The software build through the project will be produced in Java and thus a suitable 

library has been found in [6] for interfacing with the Twitter API. Due to the nature of the 

Twitter API rate limiting requests as noticed in [7] data collection will be performed over a 

week long period. 

3.2 Fake Follower Companies 

Fake account companies have arisen in recent years that provide people with ‘n’ 

amount of a followers, of which a number can be considered bots, for a given price. A number 

of these companies claim With Twitter’s increase in popularity, and the increase of companies 

setting up profiles on the social network which have begun measuring the success of their 

reach based on the number of followers they have (who ultimately see’s their posts.) 

4    The Proposed System 

         The aim of the proposed system is to design and implement a software package that 

can accurately and efficiently determine between bot and human on Twitter. The system will 

be developed in Java making use of existing machine learning libraries such as [9] and 

Twitter API libraries such as [10]. The main components of this system will entail initial user 

input, background interaction with the Twitter API (data gathering), analytics using machine 

learning and a final resulting interface for Desktop machines (though being Java would be 

available on other platforms.) 

4.1 Interface 

         The interface for the software needs to be easy to use yet comprehensive enough to 

gain a good insight into the characteristics of a given users Twitter account. Initially upon 

opening the system the user would be asked to provide a Twitter username to analyse. The 

system will begin gathering data about the user using the Twitter API and compare it against 

the machine learning model in which has been developed during initial data-set experiments. 

The analysis should be a short, efficient process to avoid making the user wait too long. Upon 

completion the system will provide a probabilistic score on the likelihood of the user being a 

bot using Bayes’ theorem. The system will also output graphs and other useful information 
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from the resulting gathered dataset for the user to manually decide upon whether they believe 

tweets to originate from a bot or human. 

         The system should provide the ability to dig deeper into a users account by providing 

a table of users associated with that of the provided. Depending on the efficiency of 

developed algorithms this could include a risk score, calculated via Bayes’, for each user. 

Further abilities should be provided through sorting of the associated user data set. 

4.2 Features 

         The proposed system will use features based on the research described in section 2.2 

(related work), repeating some of the tests from this research and then using machine learning 

techniques and statistical analysis to improve upon this analysis and find additional 

taxonomies that identify bots.     

         As mentioned in section 3, data collection, analysing of an initial data set is important 

to gain a clear understanding of the features sets that firstly bots in general possess, but also 

the features that differ between those of different type. Classification models that should be 

useful in determining a given bots taxonomy include firstly Logistic regression, Naive Bayes 

and Support vector machines before finally using decision tree classifiers to analyse the 

observations made by earlier classifications.   

         The system should make use of a two-stage framework. This will firstly involve 

identifying bots, and secondly differentiating between the different types of bots as noted in 

section 2.1. Initially this will involve a binary classification model of separating the data set 

between bots and humans. Once separated bots will be further analysed and passed through 

cluster analysis algorithms to determine the bots taxonomy. Should a given taxonomy not 

exist within the system, it shall classify it based on it’s context using natural language 

processing techniques. 

In partnership with the binary classification model when determining between bots 

and humans, but also different types of bots, statistical tests shall be carried out to better 

determine an outcome. The Mann Whitney and 2-sample T test  can be used to compare two 

samples and see the significance to which they differ. For example, as mentioned in section 3 

comparing expected features of a given bot taxonomy against the actual data set. 

Existing techniques will be analysed in depth via research of the theorems and 

methodologies involved, such would involve manual investigations and calculations on 

existing data sets to draw the accuracy and efficiency from these methods. Should results 

prove to be conclusive the method will be used. As the project progresses examination of 

further, new, ideas will involve comparing them to existing techniques but also manually 

reviewing them against real Twitter data before further proving said idea against its associated 

theorem. 

Ideas that have yet to be considered in prior research include using Natural Language 

Processing to determine the context of the tweet in relation to the category given by the hash 

tag, thus things completely unrelated would increase the potential bot score. Similarly, online 

analytics of websites has dramatically improved in determining bad offenders on the web. 

Thus, it is proposed gathering the risk score of a given URL as a determining factor to the risk 

of a given tweet. 
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5 Evaluation 

         Measuring the success of identifying a bot on Twitter is the most important of the 

system life cycle. In order to evaluate the overall success of the system two evaluations can be 

made, these being performance-based and usability-based. 

         Performance-based evaluation will involve measuring how good the system is at first 

detecting a bot but secondly classifying the bot into it’s given taxonomy. For this 

classification measures will be used being precision and recall (system produces a things it 

believe to be bots and of a given taxonomy, these values can be then measured.) Such 

techniques will then be applied to the F1 score, calculating the test accuracy and used to 

refine the machine learning model. 

         Usability-based evaluation will involve testing how the useful the system for the end-

user. This should involve a separate, online, system that allows a given test user to sign into 

their Twitter account and build a list of their tweets (from their timeline) in tabular form. The 

backend Java based system will then analyse the given data set and present back to the web 

application what it believes are generated by bots, along with their associated taxonomy. The 

user can then go through the table and mark which are correct and which are not. After which 

point the user would submit the results of the evaluation and be presented with a 

questionnaire to outline their opinion of the positives and negatives of the analysis system. 

Such would provide both quantitative data in form of the tabular corrected result set and 

qualitative results from the user questionnaire after the evaluation process. 
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Gantt Chart 
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