

Kieran Brahney

Information Extraction from Semi-Structured Documents

MSci. Computer Science with Industrial Experience

05/06/2015

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 2 of 55

I certify that the material contained in this dissertation is my own work and does not contain

unreferenced or unacknowledged material. I also warrant that the above statement applies to

the implementation of the project and all associated documentation. Regarding the

electronically submitted version of this submitted work, I consent to this being stored

electronically and copied for assessment purposes, including the Department’s use of

plagiarism detection systems in order to check the integrity of assessed work.

I agree to my dissertation being placed in the public domain, with my name explicitly

included as the author of the work.

Date: _______________

Signed: _______________

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 3 of 55

ABSTRACT.

 Every hazardous chemical material is required to be accompanied by Safety Data

Sheets (SDS). Employing a semi-structured format, they offer information and advice with

regard to the safe handling and use of the product. In an effort to separate out specific data

items, a variety of information extraction techniques were studied to utilise their best features

and apply them to the SDS.

An extensible and scalable Java-based system was designed, implemented and tested.

The system supports information extraction using a user-provided lexical specification

containing a series of regular expressions. The accuracy of the system was evaluated for each

XML element on 40 ‘unseen’ safety data sheets. On structured textual elements, for example

phrase codes, the system was able to reach accuracies between 85 – 100%. Unfortunately,

where the text was more unstructured, formats deviated wildly and the accuracy dropped as

low as 35%.

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 4 of 55

TABLE OF CONTENTS

Abstract. .. 3

Table of Contents .. 4

Working Documents ... 5

1 Introduction ... 6

2 Background .. 7

2.1 Existing Environment .. 7

2.2 Relevant Work... 7

2.2.1 Statistical Modelling .. 7

2.2.2 Named Entity Recognition ... 8

2.2.3 Grammars ... 8

2.2.4 PDF-to-XML.. 8

2.2.5 Apache UIMA .. 9

2.2.6 Regular Expressions... 9

2.3 Limitations .. 9

3 Design .. 11

3.1 System Architecture .. 11

3.2 Database .. 12

3.3 API .. 12

3.3.1 GET documents ... 13

3.3.2 GET documents/:id .. 14

3.3.3 POST documents ... 15

3.3.4 DELETE documents/:id ... 16

3.4 Worker Process ... 16

3.4.1 Message Queue .. 16

3.4.2 Java PDF Libraries ... 17

3.4.3 Lexical Specifications .. 18

3.5 Summary ... 19

4 Implementation .. 20

4.1 Database .. 20

4.2 API .. 21

4.2.1 GET documents/:id .. 21

4.2.2 POST documents ... 22

4.2.3 DELETE documents/:id ... 22

4.3 Communication Channels ... 23

4.3.1 Publishing messages .. 23

4.3.2 Consuming messages ... 23

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 5 of 55

4.4 Worker Process ... 23

4.4.1 PDF to Text .. 24

4.4.2 Lexical Analysis... 24

4.5 Summary ... 25

5 Testing ... 26

5.1 Conversion Algorithm ... 26

5.2 Variety of inputs .. 27

5.3 PDF versions ... 28

5.4 Character sets .. 28

6 Evaluation .. 30

6.1 Methodology ... 30

6.2 Conversion Accuracy .. 30

6.2.1 Safety Data Sheets ... 30

6.2.2 Bibliography of Literature ... 33

6.3 Scalability .. 35

6.4 Summary ... 35

7 Conclusion ... 36

7.1 Review of the Aims ... 36

7.2 Future Work .. 36

7.3 Lessons Learned .. 37

7.4 Closing Comments .. 37

Acknowledgements ... 38

References ... 39

Appendix A: Web Service class diagram ... 43

Appendix B: Message Queue Class Diagram ... 44

Appendix C: Emergency phone numbers ... 45

Appendix D: Proposal ... 46

WORKING DOCUMENTS

A summary of the working documents for this report can be found at:

http://www.lancaster.ac.uk/ug/brahney/FYP2/

Further links are available from this page to each individual working document.

http://www.lancaster.ac.uk/ug/brahney/FYP2/

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 6 of 55

1 INTRODUCTION

“Every day humans and computer systems generate a staggering 2.5 quintillion bytes

of data – so much so that in the past two years alone 90% of the world’s data has been

produced” (IBM, 2015). Of that, approximately 75% of the data is in an unstructured format.

That in itself presents a huge challenge for analysts. The information must first be located,

extracted, and then re-formed into a more useful, practical structure than offered in its original

amorphous state. Indeed, converting the original sources to a regularised and schematised

format allows the information to be more easily searched, integrated and use. For example,

consider the task of extracting calendar information from e-mails such that it can be exported

to an external calendar. There are a variety of ways of describing who, what and when a

calendar event may occur hence making automated information extraction a difficult task.

Information Extraction (IE) is the process of locating and extracting specific

information in natural language documents. The field is subject to extensive research across a

range of communities, including document analysis, natural language processing (NLP) and

machine learning (ML) to name but a few. This work seeks to address the problem of

information extraction on semi-structured documents within the domain-specific area of

material safety data sheets (SDS). SDS’s are regulatory documents for the safe handling, and

remedial action within expected scenarios of chemical substances. In June 2015, a new

complex regulation to be known as Classification, Labelling and Packaging (CLP) will

replace the old system of Dangerous Preparation Directives (DPD). In recent months, the

convoluted requirements of the regulation led a number of large industry bodies to produce an

XML1 standard (SDSComXML) for the exchange of SDS between producers, suppliers and

users of chemical products (Alliance UG, 2015).

This present work seeks to produce a system which complements their goal by

supporting the automatic conversion of SDS into the SDSComXML standard. The system

aims to meet the following goals:

 To discover state-of-the-art approaches for information extraction and understand how

the system resolve their limitations

 To be extensible and scalable through the use of good programming principles,

reducing future maintenance

 To support the extraction and conversion of plain text data into XML, that is present

within the first two sections of SDS; with an accuracy of greater than or equal to 95%

 To evaluate the extensibility of the system by comparing its performance on extracting

citation data from scientific literature and then comparing the results against the state-

of-the-art

In this report, the design and implementation of the aforementioned system are

described with respect to the objectives. The report goes on to describe how the system was

tested, and the difficulties of parsing unstructured information, particularly in such a short-

time frame. The accuracy of the system is then evaluated with respect to its performance on

unseen SDS. Furthermore, the extensibility objective is assessed with respect to state-of-the-

art methods for extracting citation information from scientific literature.

1 XML, "Extensible Mark-up Language" is a standard approved by the W3C that is a universal format for data

exchange on the Web. XML supports electronic exchange of machine-readable data on the web.

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 7 of 55

2 BACKGROUND

The Reach Centre (The Reach Centre, 2015) is a leading provider of scientific and

analytic services, training, and regulatory guidance in the field of chemical management and

risk assessment. The company seeks to capitalise on research that is exploring ways of

extracting information from semi-structured documents in order to establish a knowledge

base derived from the domain specific of material safety data sheets. Looking further ahead,

another aim is for the system to be extensible; this aspect will be compared and evaluated

against current practices in related research.

2.1 Existing Environment
The Reach Centre offers a range of online services enabling customers to effectively

manage and comply with current and future chemical legislation. The majority of their

products are based around SDS, two of their largest being:

 “SDS Manager”. A cloud storage system with SDS version tracking capabilities

 “chemtrac”. A database of essential information on more than 150,000 chemical

substances. The service enables customers to assess compliance and business risk.

All of the company’s services are built using PHP, MySQL and frontend web technologies on

Linux-based servers. Design considerations are bounded by the systems currently in use

within the company.

This work contributes to a new product idea, herein referred to as “SDS Author”; one

of its aims is to enable customers to edit SDS via a web portal. A number of years ago, a

previous developer at the company had briefly attempted a solution. However, their

approach lacked formal structure, used aging technologies, and was nothing more than a

couple of hardcoded regular expressions2. This present work starts from scratch and hopes to

resolve many of the issues present in the original attempt.

2.2 Relevant Work
There exists a vast amount of work in the field of information extraction. This section

seeks to compare the range of approaches in order to identify those that are most suitable for

the implementation of “SDS Author” in such a short time frame.

2.2.1 Statistical Modelling

In 2001 (Lafferty, et al., 2001) introduced conditional random fields (CRFs), a class

of statistical modelling, based on conditional Markov chain models (CMMs). The model is

used to encode the relationship between text elements and construct annotations. Since 2001

CRFs have received considerable research interest in the area of information extraction on

natural language texts.

Some research (Hetzner, 2008; Peng & Mcallum, 2006) has been carried out

regarding the extraction of bibliographical information from literature. In 2006, CRFs were

compared against previous best Support Vector Machine (SVM) results for citation extraction

and found that the word error rate was reduced by 78% (Peng & Mcallum, 2006). Moreover,

2 “A regular expression (regex or regexp for short) is a special text string for describing a search pattern. You

can think of regular expressions as wildcards on steroids.”

 Available at: http://www.regular-expressions.info/books.html [Accessed 19 05 2015]

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 8 of 55

hidden Markov models were used by (Hetzner, 2008) achieving an accuracy of > 90% when

tested against the Cora dataset – a heterogeneous set of citation data. However, they noted

difficulties in using regular expressions to parse symbol alphabets.

2.2.2 Named Entity Recognition

Named entity recognition (NER), is a sub-field of natural language processing which

seeks to classify elements in natural language text into one of several pre-defined classes.

There exist a number of techniques for building NER systems, (Eltyeb & Salim, 2014)

outlined a state-of-the-art review on chemical NER (CNER) systems. CNER systems aim to

recognise chemical entities including trivial names, abbreviations, molecular formula and

IUPAC entities.

Many CNER systems are built using statistical model techniques, in particular CRFs

(Klinger, et al., 2008; Usié, et al., 2014; Grego, et al., 2009). Generally each of these works

achieved an accuracy of approximately 80%. The highest accuracy was achieved by

(Klinger, et al., 2008) at 85.6% when tested against a MEDLINE corpus. They did however

note that there were difficulties in border detection of long entities especially when occurring

in parentheses or enumerations. Chemspot developed by (Rocktäschel, et al., 2012) attempts

to combine entity recognition and the classification of chemical in natural language texts

using a combined CRF model and a dictionary. They achieved reasonable accuracies of 79%.

A similar hybrid approach was applied to CHEMDNER (Krallinger M, 2013) who utilised

document indexing to search for chemical entities, reaching an accuracy of 87.39%.

2.2.3 Grammars

There has been increasing research in applying grammars to the field of information

extraction, particularly on semi-structured documents. Context-free grammars were

compared against CRFs by (Viola & Mukund, 2005) when tasked with extracting

bibliography information from literature. They found that CRF’s only managed an accuracy

of 45.67% whilst the context-free grammar delivered a 72.87% accuracy - an improvement of

almost 30%! It is noted that context-free grammars benefit from long range scanning and

label dependency which are not possible when using CRFs.

2.2.4 PDF-to-XML

Some research has also worked towards the general task of converting documents into

XML. In the early 2000’s , attempts were made to convert information from the web into

structured XML (Liu, et al., 2000; Meng, et al., 2002) in order to enable more sophisticated

queries be performed on otherwise unstructured information. Both adopted a schema-guided

approach such that a user would define the type descriptors and mapping rules for the data

that should be extracted.

By 2006 their work had been applied by (Déjean & Meunier, 2006) to convert the

structure of PDF documents into XML, such that headers, paragraphs, lists and so on can be

identified. Their approach involved several steps which included text reconstruction,

header/footer detection and paragraph segmentation. Much like other previous works, they

noted difficulties in handling tables, figures, captions and so on.

Recently, this work was developed further by (Constantin, et al., 2013) when they

developed a fully-automated service for PDF-to-XML conversion of scientific literature

service. Their aim was to extract: the title, abstract, authors, text, and bibliography

information. Whilst their approach was similar to (Déjean & Meunier, 2006) they also

applied additional heuristics to spatial organisation detection. During evaluation they

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 9 of 55

achieved 77.45% on top-level heading identification and 74.05% on individual bibliography

items.

2.2.5 Apache UIMA

Apache UIMA (The Apache Foundation, 2015) is a framework designed to analyse

large volumes of unstructured information in order to discover knowledge relevant to the end

user. It has been designed to scale, and provides a number of components to analyse the

information, for example, language identification, NER and so on.

The framework has been applied to a diverse range of use cases. For example,

(Stadermann, et al., 2013) used the framework to extract information from scanned legal

contracts using OCR. They analysed their approach against 449 documents and achieved a

precision rating of 97% on plain text and 89% on tabular data, recall was slightly worse with

93% on plain text and 81% on tabular data. That being said they noted difficulties in

handling the inaccuracies produced by OCR. In another use case description, MedEx (built

on Apache UIMA) was used to extract medication information from discharge summarises

(Xu, et al., 2010). They achieved accuracies greater than 90%.

2.2.6 Regular Expressions

Another approach to extracting information from structured documents involves the

use of regular expressions. These are special sequences of characters for describing a search

pattern. They were used by (Xiaoyu, et al., 2010) to extract bibliography information from

scientific literature. Their approach used data from the ACM digital library together with a

series of regular expressions to identify the authors, title, journal name and so on. Each

regular expression was evaluated individually and achieved a range of precision and recall

values3. For example, the title received 100% precision and 53% recall whilst the journal

name achieved 93% precision and 64% recall.

2.3 Limitations
A number of works already mentioned, have used statistical methods to generate named

entity recognition systems. In many cases their accuracies were reasonable though far from

desirable in a commercial setting (80%). One of the most common reasons for reduced

accuracy in these systems is due to lack of context i.e. they rely upon the surrounding text to

make informed decisions. Moreover, “SDS Author” hopes to extract the key-value mappings

from sub-sections. For example, NER may correctly identify e-mail addresses within the

document however “SDS Author” requires knowledge of ownership i.e. supplier one’s e-mail

address. That being said, NER could supplement “SDS Author” after the key-value mapping

has been extracted.

CRF’s and CFG’s are two commonly described techniques for information extraction

tasks. Prior work suggested that CFG’s outperformed CRF’s and had a number of beneficial

features. That being said, CFG’s require re-training if the input data changes in some way.

The results appear to suggest that either of these approaches would have been ideal for “SDS

Author”. However, due to the short time frame of this work and the steep learning curve to

understand and implement either approach, both were duly noted but not used.

3 “In information retrieval with binary classification, precision is the fraction of retrieved instances that are

relevant, while recall is the fraction of relevant instances that are retrieved.”

 Available at: http://en.wikipedia.org/wiki/Precision_and_recall [Accessed 24 05 2015].

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 10 of 55

On the face of it, the Apache UIMA framework is a scalable, extensible system,

although provides an empty framework i.e. the developer must build the annotators. The

system described in this report requires a generic solution such that it can be applied to

multiple use cases. This means that users can ultimately build their own text annotators using

expert knowledge and provide it to the system at runtime. The UIMA framework does not

support this and would have required a separate application to be developed for each use

case. Having said that, “SDS Author” does utilise components from Apache UIMA, for

instance, the scalable work queue architecture.

 Some research has contributed to the general task of converting PDF’s into XML.

All the approaches noted difficulties with handling presentation formats such as tables,

figures, and erroneous characters when handling PDF documents. That being said, some of

their contributions could be useful for future work on “SDS Author”, for example (Déjean &

Meunier, 2006) developed header/footer detection and (Constantin, et al., 2013) developed

spatial organisation detection.

 Regular expressions were used to extract reference data from scientific literature

(Xiaoyu, et al., 2010). However they noted that often, regular expressions were inaccurate

under certain character sets. Moreover, small deviations from the expected input would

dramatically decrease the accuracy of the system. Due to their simplicity and the pre-defined

structure of sub-sections within SDS’s, regular expressions are a suitable approach for “SDS

Author” to be implemented in the short time frame. Combined with a user-defined schema

guided approach, similar to those described by (Liu, et al., 2000; Meng, et al., 2002), will

help meet the extensibility goal of the system.

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 11 of 55

3 DESIGN

The system aims to accurately support the extraction of meaningful information from

a PDF document through an extensible, scalable architecture. In this chapter the design of the

system is described, starting with an outline of the overall architecture followed by a more

detailed description of the system components.

3.1 System Architecture
 Figure 1 depicts the architecture of the system which is composed of 2 major

components. The first, an API exposes an interface to the system and defines the actions that

external users and systems can perform e.g. fetching, deleting and submitting conversion

requests. The second, a worker process, is a standalone program which performs the

conversion task. The standalone nature of the program means that more worker processes

can be created dynamically, thus allowing the system to scale with its user base. Moreover,

multiple worker processes introduce a recovery mechanism whereby if a worker becomes

unavailable or doesn’t acknowledge task completion another can continue the work.

 The two major components of the system coordinate their activities via message

passing controlled by the message queue. The queue should store a prioritised list of

incoming conversion requests so that they can be processed in a first-in-first-out (FIFO)

order. When a new conversion request is submitted to the system, the request should be

uploaded to the database and added to the back of the message queue. Messages in the queue

are then distributed to the first available worker process. Once a worker process has received

a message it will begin the document conversion task by fetching the associated message data

(files) from the database. Upon completion the message would be acknowledged so that it

can be removed from the queue and the worker then becomes available to receive further

messages. Furthermore, in order to ensure that conversion requests and their results are

available in the future they are stored in a database.

Figure 1 System Architecture

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 12 of 55

3.2 Database
As required by the company’s existing environment, the database should make use of

MySQL. Figure 2 (below) depicts the two entities that make up the database and their

relationships to one another. The document entity represents the original PDF document; it

holds the status of the conversion and if successful, its result. The upload entity represents

the normalised state of a document and user-provided specification such that both ultimately

represent files. The entity requires that the file hash is included to ensure there are no

duplicate binaries in the database hence maximising storage space. Moreover, the filename

must be provided so that the binary has its original name when shown back to the user.

There are a number of reasons for storing files in a relational manner. Firstly, it

simplifies access as everything is in one place and hence makes backups easier. More

importantly, ACID consistency means that files are always in sync and able to participate in

transactions. That being said, (MySQL, 2003) states that storing large (1G+) files in the

database can present problems as the engine stores 3 copies of it in various buffers.

Therefore, in this instance, because files uploaded to the system should not exceed one or two

kilobytes, simplicity and ACID properties have been opted for.

3.3 API
The REST API will provide programmatic access to read and write data to the system.

It exposes 4 functions allowing users to submit a new conversion request, cancel a conversion

request and fetch the information associated with a past or present request. At the moment

users do not authenticate to the API and hence can access any information in the system’s

database; all responses are available in JavaScript Object Notation (JSON)4. The four API

functions are as follows.

4 “JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for humans to read

and write. It is easy for machines to parse and generate.”

 Available at: http://json.org/ [Accessed 09 05 2015].

Figure 2 Entity-Relationship Diagram of the two entities making up the system database

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 13 of 55

3.3.1 GET documents

Fetch all of the conversion requests that have been submitted to the system. This will

return past and present requests including the PDF document, user-provided specification

files, and its system status along with associated result / error messages. See GET

documents/:id for more specific details on the return values.

Example Request

GET

http://api.localhost/documents

Example Response

[

 {

 "id": 1,

 "upload": {

 "id": 2,

 "hash": "94949321487213872341234",

 "filename": "Acetic Acid _80 - _90% (ALL GRADES) v.3.pdf",

 "content": [0],

 "created_at": "Apr 29, 2015 4:49:36 PM"

 },

 "schema": { . . . }

 },

 "status": "ERROR"

 },

 {

 "id": 2,

 "upload": { . . . }

 "schema": { . . . },

 "status": "COMPLETE",

 "result": { . . . }

 }

]

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 14 of 55

3.3.2 GET documents/:id

This function returns a single conversion request, specified by the id parameter. See

GET documents for getting all of the conversion requests that have been submitted to the

system.

About Status

The status field is used to indicate the progress of the conversion request through the

queue. Any of the following from the enumerated list are possible values:

 CANCELLED: the request was removed by the user before processing

 ERROR: the worker failed to complete the request due to a variety reasons

(unsupported pdf version, input validation errors, internal implementation errors)

 IN PROGRESS: the request is currently being processed by a worker

 COMPLETE: the request completed successfully

About Result

 The result field holds an upload record, with the two most important fields being the

filename and the content. These allow the end-user to access the XML result of the

conversion process.

 If there is no result for the conversion request, for example when there has been an

error or the conversion request is in progress the field should be omitted from the

result – as seen below.

Parameter(s)

id

required

The numerical database ID of the desired conversion request.

Example value: 123

Example Request

GET

http://api.localhost/documents/2

Example Response

[

 {

 "id": 2,

 "upload": {

 "id": 2,

 "hash": "94949321487213872341234",

 "filename": "Acetic Acid _80 - _90% (ALL GRADES) v.3.pdf",

 "content": [0],

 "created_at": "Apr 29, 2015 4:49:36 PM"

 },

 "schema": { . . . },

 "status": "ERROR"

 }

]

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 15 of 55

3.3.3 POST documents

This function submits a new document conversion request to the system. Firstly, it

should validate that each of the required parameters are of the correct file format (pdf and

zip), if not a HTTP 400 error will be returned. On successful upload, the function will return

HTTP 200 (Accepted) notifying the user that the request has been received and is in the

queue waiting to be processed. The user should then poll the GET documents/:id function to

monitor the requests progress.

Parameter(s)

pdf_file

required

The multi-part file contents of the PDF document to run the

conversion request against

zip_file

required

The multi-part file contents of a zip file containing the

following:

 Java source code (‘.java’) for the desired entities to be

extracted from the PDF document

o All classes, methods and fields must be annotated

using Java Architecture for XML Binding

(Oracle, 2015)

o At most one class must be annotated with the

@XmlRootElement annotation

 At most one JFlex specification file with a file

extension matching ‘.jflex’ or ‘.flex’

o The class annotated by @XmlRootElement must

be instantiated and used to store extracted

information

Example Request

POST

http://api.localhost/documents

Example Response

[

 {

 "id": 5,

 "status": "QUEUED",

 "message": "Task successfully queued."

 }

]

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 16 of 55

3.3.4 DELETE documents/:id

This function should mark a given conversion request as cancelled, notifying the

worker processes to ignore the conversion request and remove it from the queue. In cases

where the requested id doesn’t exist the function will return HTTP 400 error (Bad Request).

Moreover, if the conversion task has already been cancelled it will return HTTP 402 error

(Not Modified).

Parameter(s)

id

required

The numerical database ID of the desired conversion request.

Example value: 123

Example Request

DELETE

http://api.localhost/documents/2

Example Response

[

 {

 "id": 2,

 "status": "CANCELLED",

 "message": "Document marked as cancelled."

 }

]

3.4 Worker Process

3.4.1 Message Queue

Section 3.1 System Architecture described that a central queueing mechanism will be

deployed to coordinate and control the message passing of tasks between the API and worker

processes. For example, when a task is sent to the queue it will automatically be stored and

later distributed to available worker processes. The mechanism would also control

acknowledgements of tasks and hence maintain any task deletions from the queue.

At a high level, there are two types of storage engine appropriate for these tasks:

‘message queues’ and ‘key-value stores’. Message queues are ideal for long-running

asynchronous processing tasks and for maintaining a prioritised list of messages. Two

important properties of message queues are that messages can be configured to be persistent

(permanent) and redelivered until acknowledged. However, once messages have been

queued they cannot be modified or deleted - messages are only purged once acknowledged by

a consumer. Meanwhile, key-value stores are a more modern alternative to traditional

relational databases and provide highly scalable, high performance storage engines with

read/write capability on messages. Suited to more traditional database usage, they lack an

acknowledgement capability and other handy features that come as standard with Message

Queues. They also trade data reliability for better performance.

In light of these points, message queues are better suited to the objectives of this

system. There are a number of message queue implementations, RabbitMQ (Pivotal

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 17 of 55

Software, Inc., 2015), Apache Qpid and Apache ActiveMQ to name but a few. RabbitMQ

and Apache Qpid were compared by (Batey, 2014) who found that whilst they provided

similar features RabbitMQ was the easiest to configure and also had excellent documentation.

Based on these findings, the design decision was made to use RabbitMQ for coordinating

message passing between the API and worker processes.

3.4.2 Java PDF Libraries

The worker process will need to employ a PDF library in order to accurately extract

text, images, tables and other metadata from the document before it can begin the conversion

task. There are a number of off-the-shelf and open-source Java-based PDF libraries for

example: PDFBox (The Apache Software Foundation, 2015), PDFxStream (Snowtide

Informatics Systems, Inc. , 2015), PDFLib (PDFlib GmbH, 2015) and iText (iText Software

Corp., 2015). Each of these libraries were evaluated to measure their support for different

versions of PDF, character sets (languages) and their extensibility with respect to parsing

complex structures (allowing additional system features in the future).

Table 1 Java PDF Libraries rated out of 10

 PDFBox PDFxStream PDFLib iText

PDF Version Support 10 10 10 10

Ability to extract metadata 5 9 3 6

Support for parsing complex

structures e.g. tables
4 10 5 6

Open-source Yes No No No

Documentation 7 7 5 7

General Accuracy 8 9 9 9

Ease of use 10 10 10 6

 44 55 42 44

 Table 1 shows the results of the evaluation performed on the four PDF libraries,

where each was evaluated out of 10 against several criteria. The results indicate that

PDFxStream performed the best. This is primarily an off-the-shelf solution however they

also offer the same software but with the limitation that it is single-threaded. Happily, this

meant that the free-version came with all the bells and whistles of the paid version and

moreover, generally outperformed the other libraries. Furthermore, the library was extensible

and also provided a number of conversion formats out of the box, for example: xml, html and

text-based.

 Meanwhile, as noted by the evaluation scores, the other libraries were somewhat

lagging behind. PDFBox came joint second and generally performed equally well with

PDFxStream. However, its major downfall was that whilst it was probably the most

extensible of all the libraries evaluated, it lacked a lot of features out of the box. iText was

another paid-for solution but without the same finesse as PDFxStream. Again, it lacked a lot

of features out of the box and more importantly lacked documentation. It was concluded that

the library seemed more suited to building PDF’s than extracting information from them.

Finally, regarding cost, PDFLib was the most expensive of all the off-the-shelf solutions.

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 18 of 55

The major caveat however was that it was much harder to configure as it was built upon JNI5

(Java Native Interface). Moreover, the library was much more restrictive after converting the

PDF to their own mark-up language “TETML” which would hence then require further

parsing.

3.4.3 Lexical Specifications

In order to meet the objective that the system should be extensible, users are required

to build their own specification. In the context of The Reach Centre, a user is defined as a

system administrator as this is a manual, time-consuming task for an expert. The

specification file outlines how to extract information from the source document by defining a

series of rules which adhere to a given syntax. The syntax for the specification file is based

on the standard Unix lexical analyser Lex (Lesk & Schmidt, 1975). Recently, this was ported

to Java in a library known as JFlex (Klein, et al., 2015).

JFlex is a lexical analyser generator for Java that takes a specification defining a set of

regular expressions and corresponding actions. It generates the Java source code that reads

input, looks for matching regulation expressions and executes the corresponding action, also

called a lexer. The produced lexer is based on deterministic finite automata which are fast,

without expensive backtracking. Moreover, the library includes a number of features that are

important to the system, for example Unicode support, and high performance.

The specification file should be broken down into 3 sections, identified by a single line

containing %%:

1. User code, defines package and import statements for the generated Java class

2. Options and declarations, consists of a set of pre-defined options used whilst

generating the Java class. For example, setting the class name and any variables.

Declarations are used to map regular expressions to a macro or abbreviation.

3. Rules and actions, consists of a series of states containing regular expressions and

their corresponding actions (Java code). Lexical states are used to group regular

expressions and determine the flow of information as the input is read through the

scanner.

5 “JNI is the Java Native Interface. It defines a way for managed code (written in the Java programming

language) to interact with native code (written in C/C++).” Available at:

http://developer.android.com/training/articles/perf-jni.html [Accessed 09 05 2015].

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 19 of 55

Table 2 (below) illustrates a very basic example of a lexical specification for reading a safety

data sheet. The lexical analyser would begin in the YYINITIAL state and upon matching the

SectionOne macro regex, would create a datasheet instance. Afterwards, it would move into

the SECTION1 state to find regexes appropriate only to that section of the document. One

particularly important property to understand of JFlex is that the regular expressions are

matched in the order they occur. Moreover, the expression that matches the longest portion

of input until a new line character is used first. Hence, “.*” will match everything, if and

only if the SectionOneOne does not match.

/* User code */

%%

/* Options & Declarations*/

%class SDS /* Set the class name to “SDS” */

%standalone /* Create a public main method */

%xstate SECTION1 /* Exclusive state, only use expressions declared in the state */

%{

 DatasheetFeed datasheet = null;

%}

SectionOne = (1\.?\s+)?(SECTION 1:\s+)?Identification of the substance\/mixture and

of the company\/undertaking

SectionOneOne = (1\.1\.?)?\s+(GHS)?Product identifier

%%

/* Lexical rules */

<YYINITIAL> {

 {SectionOne} {

 datasheet = new DatasheetFeed();

 yybegin(SECTION1); /* Jump to state named SECTION1 */

 }

}

<SECTION1> {

 {SectionOneOne} { System.out.println(“Found section 1.1”); }

 .* { /* gobble everything else */ }

}

Table 2 Example lexical specification for reading a Safety Data Sheet

3.5 Summary
To conclude, the system is composed of two major components. The API exposes

four functions that external users can perform on the system. Primarily these functions fetch

and update records stored in a MySQL database. Conversion requests however are published

to RabbitMQ, a third-party message queue software, and automatically distributed to worker

processes. The following chapter discusses the implementation of the system.

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 20 of 55

4 IMPLEMENTATION

Earlier, it was noted that the system was split into two main components, an API, and

worker processes which coordinate their activities through a message queue provided by

RabbitMQ. Both components of the system were built using the Java Spring Framework

(Pivotal Software, Inc., 2015) which builds upon the functionality provided by the Java

Enterprise Edition (JavaEE); an API and runtime environment for developing large, scalable,

and reliable network applications. Spring also ensures that the programmer adheres to good

coding practices, for example dependency injection, and loose coupling between modules

which should reduce future maintenance time. All of these features should be beneficial to

meeting the extensibility objective of the system.

4.1 Database
Both components of the system shared the implementation of entity models which

outlined methods for accessing and modifying information in the database. Again, in order to

meet the extensibility requirement of the system, a common design pattern and programming

technique was employed.

Data Access Objects (DAO) is a design pattern that maps application calls to a

persistent layer without exposing the specific implementation details of accessing the

database (Oracle, 2002). Section 3.2 describes the two existing tables; DAO suggest that

their design is mapped to a Java class (see Table 3). An interface then defines the methods to

handle the database operation which manipulate the Java object. Different implementations

of the interface can then handle the specific logic for accessing each database engine for

example flat file, MySQL and so on. The design pattern is particularly important in ensuring

loose coupling between parts of the application that should have no awareness of each other

and are accessed frequently. This design pattern helps to meet the extensibility aim by

ensuring that in the future developers could easily change the database engine without it

significantly affecting the code – only a new interface would need to be written.

Table 3 Data Access Objects example entity and interface

Entity DAO Interface

public class Upload {

 private int id;

 private String hash;

 private String filename;

 private byte[] content;

 private Date created_at;

 public Upload(String filename,

 byte[] content) { . . . }

 public int getId() {

 return id;

 }

 . . .

}

public interface GenericDAO<T> {

 List<T> findAll();

 T findById(int id);

 Integer insert(T f);

 void update(T f);

}

Object Relational Mapping (ORM) is a programming technique for converting data

from database systems to object-oriented objects (redhat, 2015). It is commonly used in

conjunction with the DAO design pattern providing the implementation for accessing various

database engines through a single method. Whilst they remove the flexibility of hand-coded

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 21 of 55

SQL statements they provide great transparency between storage engines without having to

change application logic and hence reduce maintenance.

4.2 API
As noted earlier, the API was built using the Spring framework. The framework

exposes a module known as Spring-boot which was particularly important to the

implementation as it provides an embedded Apache Tomcat (The Apache Software

Foundation , 2015) server. This means that the administrator of the system does not have to

worry about complex installation procedures with many dependencies.

The API exposes four functions for external users and systems to make use of the

system. Below, UML diagrams describe the workflow when interacting with the three main

API functions.

4.2.1 GET documents/:id

Figure 3 illustrates one of the most common actions performed on the system: fetching

a document via its database id. The action allows a user to fetch up-to-date information about

a given document stored in the database. Users may choose to poll this function on a regular

basis to monitor the progress of the request through the queue and later fetch the results once

marked as complete.

Figure 3 UML Sequence diagram illustrating the flow of information on fetching a

request from the database

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 22 of 55

4.2.2 POST documents

Figure 4 illustrates the primary action performed on the system: submitting a new

conversion request. At a high-level this process involves a number of validation checks to

ensure that the data meets the requirements specified in the design. If there are no validation

errors, the files are uploaded to the database and a message published to the queue containing

the inserted database id. The message would then later be consumed by an available worker

process. Due to the long-running nature of the processing task, the system immediately

returns a success or failure depending on whether it was able to add the task to the queue.

The user would then submit GET requests with the request ID to monitor progress.

4.2.3 DELETE documents/:id

Figure 5 illustrates the flow of information required to delete a conversion request.

This is very similar to fetching a document from the database. Once the document has been

fetched, its status is set to CANCELLED and an update issued to the database. This

procedure involves specifying the id of the conversion request that should be removed. In

cases where the status of the request has already been marked as “IN PROGRESS” it is not

possible to remove the request. This would have required an additional implementation detail

that regularly checks the database whilst the worker is processing the request, hence

introducing additional overhead on the worker and database.

Figure 4 UML Sequence diagram illustrating information flow on a new conversion request

Figure 5 UML sequence diagram illustrating information flow on cancelling a conversion

request

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 23 of 55

4.3 Communication Channels
The API and worker processes communicate with each other by connecting to a shared

message channel on the RabbitMQ server (described in section 3.4). The channel is

configured by the component which first connects to the RabbitMQ server. The

configuration involves providing a channel name and whether a hard copy of the queue

should be kept. This is important as RabbitMQ is an in-memory implementation, hence once

the server is shutdown anything stored in-memory will be lost. Furthermore, the

configuration states that RabbitMQ should make use of fair dispatching of messages such that

messages are only dispatched to a worker once they have acknowledged completion of the

previous message. For compatibility the configuration details are identical across both

component implementations.

4.3.1 Publishing messages

When a user would like to submit a new conversion request to the system, the API

publishes messages to the RabbitMQ server using its basicPublish() method:

void
basicPublish(java.lang.String exchange, java.lang.String routingKey,

AMQP.BasicProperties props, byte[] body)
Publish a message

The implementation states that a new message should be sent to the configured queue name

containing solely the database id of the inserted ‘document’ entity (see section 3.2). The

AMQP.BasicProperties setting also states that the server should redeliver the message

another worker in case of failure.

4.3.2 Consuming messages

Messages are dispatched to worker processes automatically by the RabbitMQ server,

however they must declare that they would like to consume messages upon connecting. This

can be achieved using its basicConsume() method:

String
basicConsume(java.lang.String queue, boolean autoAck,

Consumer callback)

Start a non-nolocal, non-exclusive consumer, with a server-generated consumerTag.

The implementation of worker processes simply declares that it would like to consume

messages from the configured queue name, acknowledge messages by itself and assert that a

given class will handle processing of the message. As the auto-acknowledge feature is

disabled, the implementation ensures that an acknowledgement is sent upon success or

failure. The acknowledgement will delete the message from the queue, thus if there was an

error, the user will have to correct the request and resubmit it.

4.4 Worker Process
The worker process component of the system is made up of a number of complex

processes. Appendix B: Message Queue Class Diagram illustrates a class diagram showing

the flow of object creation in consuming a message and performing the conversion task.

Firstly, the Application class, initialises the connection to the MySQL database and

RabbitMQ server. The ApplicationReadyListener class is called automatically by the Spring

framework once it has initialised. The class initialises the RabbitMQ message channel and

database services, hence now being ready to consume messages. Once a message is

consumed the MessageConsumer class performs the conversion task.

https://www.rabbitmq.com/releases/rabbitmq-java-client/v3.5.1/rabbitmq-java-client-javadoc-3.5.1/com/rabbitmq/client/Channel.html#basicPublish%28java.lang.String,%20java.lang.String,%20com.rabbitmq.client.AMQP.BasicProperties,%20byte[]%29
https://www.rabbitmq.com/releases/rabbitmq-java-client/v3.5.1/rabbitmq-java-client-javadoc-3.5.1/com/rabbitmq/client/AMQP.BasicProperties.html
https://www.rabbitmq.com/releases/rabbitmq-java-client/v3.5.1/rabbitmq-java-client-javadoc-3.5.1/com/rabbitmq/client/AMQP.BasicProperties.html
https://www.rabbitmq.com/releases/rabbitmq-java-client/v3.5.1/rabbitmq-java-client-javadoc-3.5.1/com/rabbitmq/client/Channel.html#basicConsume%28java.lang.String,%20boolean,%20com.rabbitmq.client.Consumer%29
https://www.rabbitmq.com/releases/rabbitmq-java-client/v3.5.1/rabbitmq-java-client-javadoc-3.5.1/com/rabbitmq/client/Consumer.html

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 24 of 55

4.4.1 PDF to Text

Once a message has been received, the document entity is fetched from the database

by its ID. The PDF document is then written to a writable location on the file system e.g.

/tmp/ on Linux. To extract the text from the PDF document the PDFxStream library,

described in section 0 is employed. The implementation makes use of the

VisualOutputTarget class which aims to preserve as much of the PDF’s text layout as

possible – including tabular data.

The PDFxStream library also exposes a number of other OutputHandlers for example

XML and HTML. Table 4 illustrates the important differences between the

XMLOutputHandler and the desired output of the system. The XMLOutputHandler simply

converts blocks of text to XML nodes, whilst the system aims to extract more meaningful

information for example the key-value pair: “Emergency telephone” ↔ “01865 407333”.

One of the main problems with these two output handlers was their detection of text blocks

was often inaccurate, sometimes separating individual characters in a header due to different

formatting styles.

Table 4 Example output from the XMLOutputHandler

In some rare cases erroneous Unicode characters would exist in the extracted text. To

remove some of these irregularities the Java Normalizer class (Oracle, 2015) was used to

firstly to convert the characters to standard normalised form. Google Guava (Google, 2015)

was then used to identify and remove erroneous characters such as the various types of

Unicode white-space and hyphen.

4.4.2 Lexical Analysis

Once the text has been extracted from the PDF, the system executes a number of steps

to perform the conversion process as shown in Table 5.

 Table 5 Pseudo code for performing lexical analysis on the extracted text

 Firstly, the zip file provided along with the PDF is written to the file system in a

writeable location and its contents extracted. Following the specification outlined in section

3.3.3 the system expects that the zip file contain a user specification file matching JFlex

(Klein, et al., 2015) syntax.

 Once a file matching an extension type of ‘.jflex’ or ‘.flex’ has been matched in the

extracted contents, the library is used to generate a lexical analyser. The source code is

written to the same location as the extracted zip contents. Next, ‘.java’ files are searched for

1. <block height="20.038376" width="361.1928" xpos="100.02228" ypos="213.56015">

2. <text>Emergency telephone : Emergency only telephone number (open 24

hours):

3. number 01865 407333 (N.C.E.C. Culham)

4. </text>

5. </block>

User provided specifications

1. Extract ZIP file to the file system

2. Convert specification file (*.jflex) to Java code

3. Compile *.java files in the extracted directory

4. Execute code produced in (2)

5. Convert instance (4) to XML

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 25 of 55

in the extracted directory and compiled using the javax.tools.JavaCompiler class. Use of this

class requires the Java Development Kit (JDK) to be present on the system.

After successful compilation the compiled lexical analyser is inserted into the current

class namespace of the worker process, using the javassist (Chiba, 2015) library. This is an

important step to ensure that the current classes i.e. MessageConsumer, can access methods

defined in the dynamically loaded class. The library is also used to dynamically insert a new

method into the generated lexical analyser allowing the system to store an instance of the

created class, rather than run the main method which has no return value.

If the class has executed successfully and a reference to its class instance has been

saved, one final step remains. In order to convert the result of the lexical analysis to XML,

the system requires that the user make use of the Java Architecture for XML Binding toolkit

(Oracle, 2015), also known as JAXB. This involves annotating a public variable with the

@XMLRootElement annotation. The system searches for this annotation in the generated

lexical analyser and then simply uses the toolkit to convert the saved class instance into

XML.

4.5 Summary
The implementation of the system was built using the Java Spring framework and

other third-party libraries to ensure an extensible system was produced. The PDF-to-XML

conversion algorithm relies upon three third-party libraries. The first, PDFxStream, converts

the PDF document to text. The second, JFlex, converts the user-provided lexical

specification into Java source code. And finally, the third, Javassist dynamically executes the

produced class providing the conversion result. The following section describes how the

implementation was tested.

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 26 of 55

5 TESTING

This section describes the methods that have been employed to test each individual

component of the system. Primarily this includes describing the test cases that have been

performed against the technical aspects of the system. Details are also provided with respect

to the difficulties of parsing with foreign character sets and how well the system performs.

Later, section 6 discusses and evaluates the extraction results in comparison to the state of the

art.

5.1 Conversion Algorithm
The API includes three functions which require user input and hence validation.

Sections 3.3.2 GET documents/:id and 3.3.4 DELETE documents/:id simply require that the

user provide a valid database id. Testing on these functions simply ensured that an error was

returned when an invalid database id was given.

Section 3.3.3 POST documents is a much more complicated function requiring

additional validation. Table 6 outlines a list of test cases performed against the system along

with normal, extreme and erroneous input data. In each case the expected outcome was

compared against the actual outcome, when there was a discrepancy the issue was resolved

and tested again.

Test case Input Expected Outcome

Each request must contain

both a PDF and a zip file

PDF file

Zip file containing lexical

specification and JAXB

class

Task successfully queued.

No PDF file but zip file

present

Required MultipartFile

parameter 'pdf_file' is not

present

PDF file present but no zip

file

Required MultipartFile

parameter 'zip_file' is not

present

No PDF or zip file Required MultipartFile

parameter 'pdf_file' is not

present

Pdf_file parameter present

but not a valid PDF

document (e.g. image)

Valid zip file present

Expected ‘pdf_file’ to be of

type application/pdf

Valid pdf file

Zip_file parameter present

but not valid (e.g. image)

Expected ‘zip_file’ to be of

type application/zip

The zip file must contain a

syntactically valid lexical

The lexical specification

contains valid syntax

Task completes successfully

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 27 of 55

specification file The lexical specification

uses different options than

normal. For example, not

specifying %standalone

Task completes successfully

The file contains a Java

syntax error

Task marked “ERROR”

The zip file contains folders The zip file contains no

folders

Task completes successfully

The zip file contains files

nested in multiple folders

Task completes successfully

There should be at most one

class annotated with

@XMLRootElement

1 class annotated Task completes successfully

Multiple classes annotated Task marked “ERROR”

No classes annotated Task marked “ERROR”

The system expects the

annotated class to be

instantiated within the

lexical specification as a

field

Class instantiated once Task completes successfully

Class instantiated multiple

times (multiple variables)

Task marked “ERROR”

No instantiation Task marked “ERROR”

File upload size Small file size (<10kb) Task completes successfully

Large file size (>5mb) Task completes successfully

Table 6 A list of test cases for submitting requests to the system along with their expected and actual outcomes

5.2 Variety of inputs
The regular expressions used in the specification to extract information from SDS

were built using a corpus of 20 CLP compliant documents. The aim of this was that the

corpus would show a common pattern across the majority of safety data sheets and hence the

specification should generalise well in the evaluation on unseen documents. Each regular

expression was individually tested using a regex debugger tool (Dib, 2015) against the

appropriate element from each document in the corpus.

Table 7 (below) shows the variety of the formatting across the corpus of documents.

In the majority of safety data sheets we assume a key-value mapping; for example, where the

key may be “Company” and the value it’s address: “Brenntag UK & Ireland …” Some of the

more notable differences in the table include how to extract the key-value pair when the key

spans multiple lines of the first column.

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 28 of 55

Company Identification Chapel House, Chapel Street,

 Congleton, Cheshire

 CW12 4AB

E-Mail (competent person) registrar@inscx.com ; mw@inscx.com

Emergency Phone No. +44 (1) 782 454 144 Monday - Friday 0900 - 1700

(GMT)

Company : Brenntag UK & Ireland

 Albion House, Rawdon Park

 GB LS19 7XX Leeds Yeadon

E-mail address : msds@brenntag.co.uk

Emergency telephone : Emergency only telephone number (open 24 hours):

number 01865 407333 (N.C.E.C. Culham)

Lafarge Tarmac Cement

Portland House

Bickenhill Lane, Birmingham B37 7BQ

Technical helpdesk: 0845 812 6323

Emergency telephone number available during office hours (08:30 – 16:00 GMT): Tel +44

(0)845 812 6232 (English language only)

Emergency telephone number available outside office hours: None

Table 7 Individual rows represent the various formatting differences across only one small subsection of the Safety

Data Sheet (1.3/1.4)

Appendix C: Emergency phone numbers also shows a subset of possible values from

section 1.4 of the SDS. This highlights the difficulty of extracting a telephone number from a

value which also contains text. In this instance, the entire value is parsed, non-digits stripped

and telephone heuristics used to best-guess a string of digits similar to a phone number. This

method ensures that the regular expression isn’t tied to a particular country’s format of

displaying phone numbers.

5.3 PDF versions
One of the most important requirements of the system is that it supports all versions of

PDF document. This was verified by looking at documentation when choosing an

appropriate PDF library in section 0. Furthermore, as documents can originate from external

users a variety of PDF settings were adjusted to see how the system coped. One of the most

common settings tested was password-protecting a PDF document. In this case, the PDF

library would output an error stating that the document was encrypted and a password

required. The status of the request would then be updated to “ERROR” with no further

processing taking place.

5.4 Character sets
PDF documents may encode text using any number of predefined character

encodings, for example: ASCII, ISO, and UTF to name but a few. Each of these character

encoding are important to present the array of characters present in different languages. Until

the introduction of Unicode there was no recognised standard, and often no single encoding

was adequate for all the letters, punctuation and technical symbols in common use (The

Unicode Consortium, 2015).

PDFxStream normalises all extracted text from the PDF document to Unicode, this

helps ensure accuracy with respect to special characters in the original document. That being

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 29 of 55

said, Unicode consists of several different encodings for a single character and sadly the list

is continuously growing every year. Table 8 shows a small subset of the 25+ characters that

represent whitespace in Unicode; a similar situation exists regarding many other common

characters.

Code Name of the character Sample Width of the character

U+0020 SPACE foo bar Depends on font, typically 1/4 em,

often adjusted

U+00A0 NO-BREAK SPACE foo bar As a space, but often not adjusted

U+180E MONGOLIAN VOWEL

SEPARATOR

foobar No width

U+2000 EN QUAD foo bar 1 en (= 1/2 em)

Table 8 Subset of the characters that represent whitespace in Unicode (Korpela, 2012)

 Testing revealed that character encodings were immediately a problem for the regular

expressions. Due to the variety of character codes that ultimately represent the same ASCII

(basic) character, the regular expression must make use of special Unicode symbols

(Goyvaerts, 2015). For example \p{Z} representing any kind of whitespace or \u00A0

representing the specific character code instead of simply “ ” (space). In cases where the

input character code differs from that of the expected value in the regular expression, it will

fail to match hence reducing the accuracy of the lexical specification. The problem was

further evident for other characters for example dashes (Korpela, 2013). The implementation

resolved these problems by replacing the known whitespace and hyphen characters with their

ASCII equivalents. However, as there was no complete solution the issue may arise in the

future with other characters.

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 30 of 55

6 EVALUATION

In this section, the system is evaluated using the Levenshtein distance similarity

metric to calculate the percentage of documents that are above a given similarity threshold.

The metric is applied to the business use case of extracting information from sections 1 and 2

of the SDS’s. It is then further applied to the extraction of citation data from scientific

literature to demonstrate the extensibility of the system.

6.1 Methodology
The system was evaluated by calculating the percentage of accurately extracted text

from the original SDS’s. For each of the required XML elements, the system output was

compared against its ground-truth counterpart using the Levenshtein string comparison

method. Any extracted element found to be above a given similarity threshold was

considered a correct match (‘a’).

Given Table 9 the percentage accuracy for each XML element is denoted as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑒 =
(𝑎 × 100)

(𝑎 + 𝑏)

6.2 Conversion Accuracy
Using the aforementioned evaluation methodology, the accuracy was reported with

respect to SDS’s and also citation data to evaluate the extensibility of the system. In each

case, the procedure for constructing the ground-truth is described and the accuracy discussed

at varying similarity thresholds.

6.2.1 Safety Data Sheets

Due to the lack of an existing dataset, over 1000 SDS’s were searched in order to find

those which were compliant and hence had the appropriate section and sub-section headings.

These was further filtered by selecting SDS’s which originated from a variety of companies,

as they would typically use the same presentation structure for all SDS’s in their product

range. In total, 60 SDS’s were selected, 20 were used for the construction of the specification

file, and the 40 remaining ‘unseen’ used for evaluation purposes. Each of the SDS’s were

manually converted into their XML counterpart, representing the expected outcome from the

system (the ground truth).

6.2.1.1 Testing Data

Table 10 (below) illustrates the accuracy of the system on the 20 SDS’s used to

construct the specification file. The total represents the number of SDS’s that had a matching

element; ground-truth documents with an empty element were omitted. Moreover, the

similarity columns, represent the percentage of documents with an XML element that is at

least 95% similar to its ground-truth counterpart. It was envisaged that each XML element

would achieve an accuracy of 100% at greater than 95% similarity. However, this did not

prove to be the case. The challenges affecting the accuracy of some of the results below are

described in section 6.2.1.2.

 Ground Truth

System outcome Above threshold a

Below threshold b

Table 9 The number of documents that are above/below the similarity threshold for each XML element

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 31 of 55

Section 1 Element Name
Levenshtein Similarity

Total
>95% >90% >85%

1.1 TradeName 100% 20

1.3 PostAddressLine1 85% 20

PostAddressLine2 85% 20

PostAddressLine3 85% 20

Phone 85% 90% 20

Email 100% 20

1.4 EmergencyPhone 35% 45% 20

Section 2 Element Name >95% >90% >85% Total

2.1 ClpHazardClassCategory 85% 7

 ClpHazardPhraseCode 100% 11

 ClpHazardFullText 81% 11

 DpdDsdRiskPhraseCode 100% 12

 DpdDsdRiskFullText 91% 100% 12

2.2 ClpHazardPhraseCode 100% 11

 ClpHazardFullText 72% 90% 11

 ClpPrecauntionaryPhraseCode 100% 13

 ClpPrecauntionaryFullText 23% 30% 53% 13

 DpdDsdRiskPhraseCode 100% 1

 DpdDsdRiskFullText 100% 1

 DpdDsdSafetyPhraseCode 100% 1

 DpdDsdSafetyFullText 0% 100% 1

Table 10 The accuracy of the system when evaluated against the 20 SDS used to build the specification

6.2.1.2 Evaluation Data

Table 11 (below) illustrates how the accuracy of the system changes as the similarity

threshold is reduced on 40 ‘unseen’ SDS.

Section 1 Element Name
Levenshtein Similarity

Total
>95% >90% >85% >75% >70% >60%

1.1 TradeName 69% 39

1.3 PostAddressLine1 45% 50% 40

PostAddressLine2 57% 40

PostAddressLine3 40% 40

Phone 64% 39

Email 81% 38

1.4 EmergencyPhone 15% 20% 39

Section 2 Element Name >95% >90% >85% >75% >70% >60% Total

2.1 ClpHazardClassCategory 71% 7

 ClpHazardPhraseCode 100% 13

 ClpHazardFullText 84% 13

 DpdDsdRiskPhraseCode 95% 100% 23

 DpdDsdRiskFullText 52% 60% 78% 82% 91% 23

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 32 of 55

2.2 ClpHazardPhraseCode 92% 14

 ClpHazardFullText 42% 57% 64% 85% 14

 ClpPrecauntionaryPhraseCode 85% 14

 ClpPrecauntionaryFullText 14% 28% 42% 57% 78% 14

 DpdDsdRiskPhraseCode 90% 10

 DpdDsdRiskFullText 30% 40% 70% 90% 10

 DpdDsdSafetyPhraseCode 81% 90% 11

 DpdDsdSafetyFullText 45% 63% 90% 11

Table 11 The accuracy of the system when evaluated against 40 'unseen' SDS

 Table 10Table 11 illustrate that the accuracy of the system varied quite dramatically

between different elements. It is clear that regular expressions resulted in high accuracies

when searching for structured text e.g. e-mail addresses and phrase codes. That being said,

on the more free-text based elements (“FullText” and “AddressLine”) the accuracy decreased

markedly. The factors affecting the accuracy of each element are discussed below.

Section 1.1: Trade Name

 The evaluation data revealed a 31% decrease in accuracy at 95% similarity, compared

to the testing data. The reason for this decline was simply because a number of the

evaluation documents exhibited a pattern that had not been seen in the testing documents

used to build the specification. This could be resolved by updating the lexical specification.

Section 1.2: Relevant identified uses

 Section 1.2 was omitted during the implementation of the specification file due to

complications with the SDSComXML standard. In the vast majority of cases, this section

contains minimal information, for example “Used in x” or “No information at this time.” It is

hoped this section could be implemented in the future with assistance from the

SDSComXML team.

Section 1.3: Supplier’s details

 The supplier’s details often listed, a company address, telephone number, and e-mail

address, or in some cases, multiples of each. Extracting this information was difficult due to

the variety of formats used to display the address. For example, some may comma delimit a

long string, some may prefix “Street”, “Post Code” and so on, whilst others may put each

component on a new line. Regular expressions were built to understand address line prefixes

and extract the relevant data however, as noted previously, often this was not the case. The

accuracy of this section could be improved by integrating named-entity recognition (NER)

software to identify phone numbers, e-mail addresses and so on.

Section 1.4: Emergency Phone Number

 This section should typically define one or more emergency phone numbers, together

with the language spoken and its opening times. This combination made information

extraction using regular expressions remarkably difficult. An objective of the system is that

it is extensible, and hence able to cope with a variety of telephone number formats. This

presents a huge challenge as the formats for telephone numbers vary dramatically from

country to country, not to mention writing styles from person to person. The problem was

exacerbated when often army times would be used to define the opening hours e.g. 0900 –

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 33 of 55

1700, see Appendix C: Emergency phone numbers. Again, NER software would have been

well suited to complement this task.

Section 2: Classification & Labelling

 The system aimed to extract 3 main components from section 2 i.e. the hazard class,

phrase codes and the sentence associated with the phrase code. With regards to the accuracy

of the hazard class, this was built to compare the extracted word against an enumerated list

provided by the SDSComXML standard. That being said, a number of documents often

mixed multiple phrases together for example “Org. Perox. CD” to represent “Org. Perox. C”

and “Org. Perox. D”.

 Phrase codes are unique identifiers representing a particular hazard. Their unique

identifier made them perfect candidates to be converted to regular expressions and hence

resulting in their high accuracy. Unfortunately, the accuracy decreased on a couple of

documents which did not explicitly specify the identifier. For example, a header (“H-

Statements”) followed by “318 - …” rather than “H318 - …”. Moreover, similarly to the

hazard classes, some phrases contained additional characters, for instance “H318A” and

hence were not valid.

 Every phrase code typically has an associated full text element describing it, for

example “H318” stands for “Causes serious eye irritation”. Often these phrase codes can be

joined together for example “H318+319+320” and their full text element would describe all

three. This made extraction a particularly difficult task as the sentence would often span

multiple lines. The system was deliberately not built to cope with these deviations and hence

only extracted information up to the new line character. The reason for this was that

document headers and footers would often separate sentences spanning multiple lines. These

would need to be stripped for extraction to be successful. The results clearly show this, as the

accuracy dramatically increased to 100% at around 45% accuracy i.e. everything up to the

new line but not anything after it.

Additional Challenges

 There were a couple of additional challenges that affected the accuracy of both the

testing and evaluation data. Firstly, the PDFxStream library states that there are a number of

difficulties with maintaining the texts original appearance (Snowtide, 2015). For example,

proportional fonts, justified text and rotated characters can cause issues with determining the

correct amount of space between words. Moreover, the library states that one of its main

benefits is its support of Unicode, such that it maintains the original characters. This

however, presented problems for the regular expressions with invisible white space

characters, partial line forwards, and so on, breaking the match. Furthermore, the system

does not yet support anything other than single column layouts. Whilst this is a rare

presentation for SDS, one of the 60 used in this work utilised a two column layout hence

making regular expression extraction difficult.

6.2.2 Bibliography of Literature

To evaluate the extensibility of the system, testing was applied to another use case:

extracting citation data from scientific literature. The literature was gathered from Google

Scholar and filtered based on two criteria:

1. The document had a single column layout - as noted above, multiple column layouts

are not yet supported

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 34 of 55

2. The referencing format used IEEE or similar. Due to the short time frame of this

work, it was important to limit the scale of this second evaluation otherwise it could

have easily grown into its own system, as evident by prior work.

In total 10 research papers were randomly selected and manually converted to their XML

equivalent. Whilst prior work (Hetzner, 2008; Xiaoyu, et al., 2010) made use of the pre-

made datasets, for example the ACM digital library, “SDS Author” requires Java objects to

be defined.

Element Name Average Levenshtein Similarity Total

Author 48% 10

FullText 54% 10

Table 12 Results of applying the system to extracting authors from bibliography information in scientific literature

Table 12 displays the average Levenshtein similarity across 10 documents for the two

extracted elements: authors and the full citation. In both cases, the results are not ideal and

worse than prior work. For example, (Xiaoyu, et al., 2010) achieved 74% accuracy when

extracting the authors. That being said, they also applied additional heuristics before regular

expressions, e.g. reference style identification.

 Figure 6 Figure 7 illustrate the range of similarity values achieved across the 10

documents. It is clear that in some cases the regular expressions worked well however

erroneous data easily reduced the similarity. Furthermore, both experienced similar problems

to the SDS evaluation, for example text spanning multiple lines and Unicode characters.

Given more time, regular expressions could have been built for individual reference styles.

Each of which define a fixed structure for the display of citations which could easily map to

regular expressions.

Figure 6 Box plot of the similarity

values on the "Author" element
Figure 7 Box plot of the similarity

values on the "FullText" element

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 35 of 55

6.3 Scalability
To evaluate the scalability of the system, messages were continuously pushed to the

API at a rate of 4.2 messages per second, totalling 300 messages with a single worker. Due

to the CPU intensive nature of the processing task, the responsiveness of the system varied

dramatically depending on the speed of the computers processor and the size of the input

documents. On a modern desktop computer the processing speed of each SDS conversion

averaged 5.278 seconds, over 40 documents. As more workers are added to the system, the

speed with which it is able to process and remove messages from the queue increases.

6.4 Summary
The evaluation has found that the system is able to achieve good accuracy (81 – 100%)

on structured text elements that do not split over multiple lines, for example, e-mail addresses

and phrase codes that easily map to regular expressions. However, it struggled to extract

free-form text elements for example phone numbers and long sentences. The system has

proved to be scalable and also generalise to other use cases. That being said, additional

heuristics are required to further increase the accuracy, for example header/footer detection

and the integration of NER software.

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 36 of 55

7 CONCLUSION

The brief for this work was to investigate state-of-the-art approaches to information

extraction and apply these in the construction of a system to extract information from SDS.

The majority of the systems aims were fulfilled however it did have some short-comings

which are later discussed in the context of future work.

7.1 Review of the Aims
The system was designed to meet the requirements and specifications gathered from

key staff members of the Reach Centre. They were made up of several business goals:

(1) “To discover state-of-the-art approaches for information extraction and understand how

the system can build upon their limitations”

The work of others involved in this area of research highlighted the complexities that are

inherent within it. Their results emphasised the point, whereby none were totally

successful in extracting information from unstructured documents. Each approach

whether employing CRF’s, CMM’s, NER’s, CRF’s, through to using Regular

Expressions failed to cope with the irregular format of many of the documents.

(2) “To be extensible and scalable through the use of good programming principles,

reducing future maintenance”

Good design and programming practices were used including DAO, ORMs and the

Spring framework to ensure the system was extensible and robust. Moreover, every step

was fully documented to further ease the implementation of any future enhancements by

other developers. The system proved to scale with its user base. That being said, the

responsiveness of the system was significantly affected by CPU processing power and

the ratio of waiting messages to worker processes.

(3) “To support the extraction and conversion of plain text data present within the first two

sections of SDS to XML; with an accuracy of greater than or equal to 95%”

To a large extent, this was fulfilled, achieving in many instances a near 100% success,

whilst in a few instances of unstructured text this fell as low as 15%. This latter case

highlights the semi-structured nature of certain sections that then allows ‘non-

conformity’ to creep in. To overcome it, involves a high level of complex amendments

to the software, and given the time constraints, this was not possible.

(4) “To evaluate the extensibility of the system by comparing its performance on extracting

citation data from scientific literature and then comparing the results against the state-

of-the-art”

The complexities of information extraction were further apparent when applying the

system to another use case. Whilst this did demonstrate the extensibility of the system,

the accuracies produced were poor. Prior work applied additional heuristics, for example

header/footer identification, that were not possible in such a short time frame.

7.2 Future Work
Given more time, the system would benefit from three additional feature groups:

1. Pre-processing. The evaluation noted that multiple column layouts were troublesome

when using regular expressions. The system should support the identification of such

layouts and convert them to single column.

PDF documents typically contain a number of additional presentation formats,

for example images and tables. Objective decision making ensured that the

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 37 of 55

PDFxStream library could support the growth of the system. The library supports

both the identification and extraction of images and tables. It is envisaged that image

extraction could work in a similar manner to MIME e-mails. Whereby a placeholder,

representing the image within the text, references its true location on the file system.

2. Software integration. It was found that named-entity recognition software could

complement regular expressions and hence improve the accuracy of extracting entities

from text spread across multiple lines.

3. Language identification. The regulation governing SDS’s applies across Europe, as

a result SDS’s may originate in a number of languages other than English. There are

multiple approaches to this. For example, translation software could convert the

document into English however this may introduce further inaccuracies.

Alternatively, different specification files could be produced and language

identification software (Lui & Baldwin, 2012) integrated to select the appropriate

specification.

7.3 Lessons Learned
Through the work I have been exposed and had to learn a number of new

technologies. The Java Spring Framework was without doubt the highest learning curve with

the introduction of new programming techniques such as dependency injection and DAO.

That being said, the framework provided a rigid structure for producing extensible code and

has hence dramatically improved my Java programming skills.

The system made use of a number of additional libraries including Rabbit Message

Queue, PDFxStream, Javassist and JFlex. Whilst I had no prior experience of using these

technologies I learnt about the importance of objective decision making and taking time to

choose appropriate technologies for the business use case. Furthermore, I learnt about the

significance of producing well-documented code. Some libraries were much better than

others, and those which were not significantly slowed down development. I now realise how

poorly documented code affects future developers.

Most importantly the work has taught me the realisation of how projects can easily

over-run. Whilst the work was initially ambitious, information extraction is a huge challenge.

The work uncovered a number of unforeseen challenges for example parsing Unicode

characters. If given the opportunity to do the project again with a longer time-scale I would

seek to further compare existing approaches to information extraction for example CRF’s and

CFG’s. The short time scale of this work has been a limiting factor such that there was not

adequate time to learn and experiment with new technologies.

7.4 Closing Comments
To conclude, the work aimed to produce an extensible, scalable system that could

accurately support the conversion of SDS’s into XML. To the best of my knowledge, this is

the first attempt at automatic information extraction on SDS’s. The system achieved

reasonable accuracies on structured elements of text such as e-mail addresses and phrase

codes. The accuracy of the unstructured elements could be further improved by refining the

regular expressions and integrating other NLP software.

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 38 of 55

ACKNOWLEDGEMENTS

I sincerely thank Barry Porter for his insightful comments and suggestions. I would also like

to thank The Reach Centre for providing me with invaluable work experience and an

excellent project concept.

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 39 of 55

REFERENCES

Alliance UG, 2015. SDSCom XML - SDS and more. [Online]

Available at: http://www.esdscom.eu/english/sdscom-xml/

[Accessed 01 03 2015].

Batey, C., 2014. Rabbit MQ vs Apache QPID - picking your AMQP broker. [Online]

Available at: http://christopher-batey.blogspot.co.uk/2014/07/rabbit-mq-vs-apache-qpid-

picking-your.html

[Accessed 09 05 2015].

Chiba, S., 2015. Javassist. [Online]

Available at: http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/

[Accessed 12 05 2015].

Constantin, A., Pettifer, S. & Voronkov, A., 2013. PDFX: fully-automated PDF-to-XML

conversion of scientific literature. In: Proceedings of the 2013 ACM symposium of Document

engineering. s.l.:ACM, pp. 177-180.

Déjean, H. & Meunier, J.-L., 2006. A system for converting PDF documents into structured

XML format. In: Document Analysis Systems VII. Berlin: Springer, pp. 129-140.

Dib, F., 2015. Online regular expressions tester and debugger - JavaScript, Python, PHP and

PCRE. [Online]

Available at: https://regex101.com/

[Accessed 15 05 2015].

Eltyeb, S. & Salim, N., 2014. Chemical named entities recognition: a review on approaches

and applications.. Cheminformatics, 6(1), p. 17.

Google, 2015. google/guava. [Online]

Available at: https://github.com/google/guava

[Accessed 11 05 2015].

Goyvaerts, J., 2015. Regex Tutorial - Unicode Characters and Properties. [Online]

Available at: http://www.regular-expressions.info/unicode.html

[Accessed 13 05 2015].

Grego, T., Pęzik, P., Couto, F. & Rebholz-Schuhmann, D., 2009. Identification of chemical

entities in patent documents. Distributed Computing, Artificial Intelligence, Bioinformatics,

Soft Computing and Ambient Assisted Living, pp. 942-949.

Hetzner, E., 2008. A simple method for citation metadata extraction using hidden markov

models.. Proceedings of the 8th ACM/IEEE-CS joint conference on Digital libraries, pp. 280-

284.

IBM, 2015. IBM - What is big data?. [Online]

Available at: http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html

[Accessed 19 05 2015].

iText Software Corp., 2015. iText Programmable PDF software - iText Software. [Online]

Available at: http://itextpdf.com/

[Accessed 17 03 2015].

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 40 of 55

Klein, G., Rowe, S. & Décamps, R., 2015. JFlex. [Online]

Available at: http://jflex.de/

[Accessed 11 05 2015].

Klinger, R. et al., 2008. Detection of IUPAC and UIPAC-like chemical names..

Bioinformatics, Volume 24, pp. 268-276.

Korpela, J., 2012. Dashes and hyphens. [Online]

Available at: https://www.cs.tut.fi/~jkorpela/dashes.html

[Accessed 13 05 2015].

Korpela, J., 2013. Unicode spaces. [Online]

Available at: https://www.cs.tut.fi/~jkorpela/dashes.html

[Accessed 13 05 2015].

Krallinger M, L. F. R. O. V. M. O. J. V. A., 2013. Overview of the chemical compound and

drug name recognition (CHEMDNER) task. Biocreative Challenge Evaluation Workshop,

Volume 2.

Lafferty, J., McCallum, A. & Pereira, F., 2001. Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. San Francisco, 18th International Conf.

on Machine Learning.

Lesk, M. E. & Schmidt, E., 1975. Lex: A lexical analyzer generator, NJ: Bell Laboratories

Murray Hill.

Liu, L., Pu, C. P. & Han, W., 2000. XWRAP: An XML-enabled wrapper construction system

for web information sources. In: Data Engineering, 200. Proceedings. 16th International

Conference. s.l.:IEEE, pp. 611-621.

Lui, M. & Baldwin, T., 2012. langid. py: An off-the-shelf language identification tool. s.l.,

ACL 2012 system demonstrations, pp. 25-30.

Meng, X., Lu, H. & Wang, H., 2002. SG-WRAP: a schema-guided wrapper generator. In:

Data Engineering, 2002. Proceedings. 18th International COnference. s.l.:IEEE, pp. 331-

332.

MySQL, 2003. TIP: Maximum size of a BLOB. [Online]

Available at: https://web.archive.org/web/20040410145633/http://www.mysql.com/news-

and-events/newsletter/2003-09/a0000000237.html

[Accessed 29 04 2015].

Oracle, 2002. Core J2EE Patterns - Data Access Object. [Online]

Available at: http://www.oracle.com/technetwork/java/dataaccessobject-138824.html

[Accessed 17 03 2015].

Oracle, 2015. Java Architecture for XML Binding. [Online]

Available at: http://www.oracle.com/technetwork/articles/javase/index-140168.html

[Accessed 12 05 2015].

Oracle, 2015. Normalizing Text. [Online]

Available at: http://docs.oracle.com/javase/tutorial/i18n/text/normalizerapi.html

[Accessed 11 05 2015].

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 41 of 55

PDFlib GmbH, 2015. PDFlib GmbH. [Online]

Available at: http://www.pdflib.com/

[Accessed 17 03 2015].

Peng, F. & Mcallum, A., 2006. Information extraction from research papers using conditional

random fields.. Information processing & management42, Volume 4, pp. 963-979.

Pivotal Software, Inc., 2015. RabbitMQ - Messaging that just works. [Online]

Available at: http://www.rabbitmq.com/

[Accessed 17 03 2015].

Pivotal Software, Inc., 2015. Spring Framework. [Online]

Available at: http://projects.spring.io/spring-framework/

[Accessed 11 05 2015].

redhat, 2015. What is Object/Relational Mapping?. [Online]

Available at: http://hibernate.org/orm/what-is-an-orm/

[Accessed 17 03 2015].

Rocktäschel, T., Weidlich, M. & Leser, U., 2012. Chemspot: a hybrid system for chemical

named entity recognition. Bioinformatics, 28(12), pp. 1633-1640.

Snowtide Informatics Systems, Inc. , 2015. PDFxStream - PDF Text, Image and Form

Extraction for Java and .NET - Snowtide. [Online]

Available at: https://www.snowtide.com/

[Accessed 17 03 2015].

Snowtide, 2015. VisualOutputTarget (PDFxStream API Reference). [Online]

Available at:

http://downloads.snowtide.com/javadoc/PDFxStream/latest/com/snowtide/pdf/VisualOutputT

arget.html

[Accessed 02 06 2015].

Stadermann, J., Symons, S. & Thon, I., 2013. Extracting hierarchical data points and tables

from scanned contracts.. UIMA@ GSCL, pp. 50-57.

The Apache Foundation, 2015. Apache UIMA - Apache UIMA. [Online]

Available at: https://uima.apache.org/

[Accessed 16 05 2015].

The Apache Software Foundation , 2015. Apache Tomcat - Welcome!. [Online]

Available at: http://tomcat.apache.org/

[Accessed 17 03 2015].

The Apache Software Foundation, 2015. Apache PDFBox - A Java PDF Library. [Online]

Available at: https://pdfbox.apache.org/

[Accessed 17 03 2015].

The Reach Centre, 2015. The Reach Centre. [Online]

Available at: https://www.thereachcentre.com/

[Accessed 1 03 2015].

The Unicode Consortium, 2015. What is Unicode?. [Online]

Available at: http://www.unicode.org/standard/WhatIsUnicode.html

[Accessed 13 05 2015].

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 42 of 55

Usié, A. et al., 2014. CheNER: a chemical named entity recognizer. Bioinformatics, 30(7),

pp. 1039-1040.

Viola, P. & Mukund, N., 2005. Learning to extract information from semi-structured text

using a discriminative context free grammar.. In Proceedings of the 28th annual international

ACM SIGIR conference on Research and development in information retrieval, pp. 330-337.

Xiaoyu, T., Zeng, Q., Ciu, T. & Wu, Z., 2010. Regular expression-based reference metadata

extraction from the web.. Web Society (SWS), Volume 2, pp. 346-350.

Xu, H. et al., 2010. MedEx: a medication information extraction system for clinical

narratives.. Journal of the American Medical Informatics Association , 17(1), pp. 19-24.

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 43 of 55

APPENDIX A: WEB SERVICE CLASS DIAGRAM

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 44 of 55

APPENDIX B: MESSAGE QUEUE CLASS DIAGRAM

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 45 of 55

APPENDIX C: EMERGENCY PHONE NUMBERS

+44 (0) 1484 514123 09:30 – 1700. GMT,

English Spoken.

+44 (1) 782 454 144 Monday Friday 0900

1700 (GMT)

+44 (0) 1453 826661

08:00 – 17:30 Monday - Thursday

09:00 – 16:30 Friday

GMT, English spoken

+44 (0) 1327 356844

Monday - Thursday 8:15 – 17:00 (GMT)

Friday 8:15-12:15 (GMT)

+44 (0) 1934 831 000 (Head Office)

+44 (0) 844 748 0108 (Customer Careline)

Monday - Friday 09:00 – 17:00 (GMT)

+44 (0) 1327 356844

Monday - Thursday 8:15 – 17:00 (GMT)

Friday 8:15-12:15 (GMT)

CHEMTREC

+1 703 527 3887

GMT-5, 08:00-17:00

Manufacturer, Japan

+81 42 554 1203

JST (+9 GMT)

+44 (0) 1925 860999

+44 (0) 1352780861

+44 (0) 7984473602

+44 (0) 7931831452

24 hours, English Spoken.

00 44 (0)151 709 2902

9am-5pm Mon - Fri

0044 (0)1280 822818

09:00 – 17:00 (GMT)

SGS: + 32 (0)3-575-5555

24 hours, multilingual service

Emergency telephone number available

during office hours (08:30 – 16:00 GMT):

Tel +44 (0)845 812 6232 (English language

only)

IN AN EMERGENCY DIAL 999 (UK only)

or 112 (EU)

For specialist advice in an emergency

telephone +44 (0) 208 762 8322

(CARECHEM24)

Telephone: +49 180 2273-112

24 hours per day, 7 days per week

Call Infotrac: 1-800-535-5053

Outside N. America: +1 352-323-3500

(collect)

+44-(0) 151-350-4595

+1 800 255 3924

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 46 of 55

APPENDIX D: PROPOSAL

Information Extraction from Semi-

Structured Documents

20/03/2015

Kieran Brahney (32857004)

Barry F. Porter <b.f.porter@lancaster.ac.uk>

Computer Science with Industrial Experience (MSci)

Abstract. Extracting information from semi-structured documents

into a regularised format is an important task. It enables the use of

sophisticated query tools and hence further integration and re-use

of the information. This research seeks to address the problem

under the domain-specific area of chemical safety data sheets by

converting PDF documents into a structured XML equivalent

governed by a schema. The schema will define the blue print for

the mapping of content between documents. The work aims to only

address the problem on readable PDF documents and support the

extraction of plain text, plus tabular data. The expected outcomes

of this work are an extensible, scalable system that supports the

extraction of content from a safety data sheet into XML using

mappings defined in a schema.

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 47 of 55

1 Introduction

The backbone of the information age is based on the ability to create and share searchable,

accessible information. In the last decade there has been rapid growth in the amount of digital

information being produced with the introduction of blogs and social media platforms. This has led to

an abundance of free-text, content-rich information including structured, unstructured and partially

structured domain-specific documents (typically adhering to some regulation). The challenge is that

very little of this information has been regularised or schematised to allow it to be searched using

more sophisticated query tools which allows the extracted information to be integrated or re-used. For

example, one may wish to sort a consortium of documents which are from a certain company,

between a time range and by most recent date.

Information Extraction (IE) is the task of locating specific information from natural language

documents. It is an area of extensive research interest covering a range of communities, including

document analysis, machine learning and natural language processing to name a few. Typically

information extraction involves populating a database with values extracted from a document and

governed by a schema. A schema gives a blueprint for how the data is organised allowing it to be

stored in a regularised format, which is then easily searched, manipulated and re-used. For example,

this topic is particularly pertinent in search engines where there are vast amounts of unstructured free-

text documents and one would like to find those matching a given query. Google Scholar is an

example of this, where bibliography information is extracted from research papers to allow users to

easily find (and search on) related articles, cited papers and track revisions.

This research ultimately aims to address the problem of automatically converting semi-

structured documents into structured formats governed by a schema. The Reach Centre (1.1

Background) seeks to apply IE techniques within their domain-specific area of material Safety Data

Sheets (SDS). SDS are regulatory documents for the safe handling, and remedial action within

expected scenarios of chemical substances. They are divided into sections which will be used as a

basis for the schema. Extraction of the information from SDS will enable the company to enhance

their existing products and also build a whole new range of products by reusing the extracted

information. On completion it is hoped that the research will have produced an extensible, scalable

system that is able to support the automatic conversion of SDS into XML using a schema. The system

should be able to support the companies growing user base and also the high-processing nature of the

conversion task.

1.1 Background

 The Reach Centre [1] is a leading provider of scientific and analytic services, training and

regulatory guidance in the field of chemical management and risk assessment. The company offers a

range of online services enabling customers to effectively manage and comply with current and future

chemical legislation. Their flagship product chemtrac® is a service containing over 150,000 chemical

substances which enables customers to assess product compliance and business risk under a given

country’s specific regulations. Some of the products more pertinent to this research include:

 “SDS Manager”: a service to maintain compliance reports and revisions of SDS

 “SDS Author”: a new product idea that would tie into SDS Manager to enable customers to

edit their SDS from the web portal (similar to Google Documents) rather than edit the

physical document and upload a new copy.

The “EU REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals)”

regulation, which came into force in June 2007, is a major driving force within the company. This

regulation attempts to improve the protection of human health and the environment from the risks

posed by chemicals through the use of SDS. As of June 2015 the regulation is being updated to

include a newer standard known as “CLP” (Classification, Labelling and Packaging) – previously

“DPD” (Dangerous Preparation Directives). The new regulation states that the document should

contain 16 predefined sections each consisting of further predefined subsections, none of which can

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 48 of 55

be left blank. Beyond this, the presentation of information within each subsection is left to the

creators’ choice.

1.2 Related Work

 Recently, A. Muawia et al. [2] found that there are many different types of approach to IE.

The first, natural language processing, is split into two sub-approaches. Named entity recognition

(NER), seeks to classify elements in natural language text for example, organisation, location, and

person. A statistical modelling technique known as conditional random fields (CRF) was applied by

[3, 4] to build a chemical NER model - both found F-measures of 79-80%. Context-free grammars are

another approach to NLP, P. Viola et al. [5] found that these performed significantly better than CRFs

resulting in an almost 30% increase in accuracy (CFG: 72.87%, CRF: 45.29%). This being said, one

problem with CFGs is that they require retraining if there are changes to the input data.

The second, ontology-based IE is defined as the formal specification of a domain-specific

conceptualisation. This is therefore defining how to create a schema for documents that may not

immediately appear to have an obvious structure. The work performed by [6, 7, 8] describes a range

of approaches and techniques for ontology-based extraction. Amongst other types of documents

(unstructured, and structured), they found that semi-structured documents typically elicit an ontology

from the predefined structure of documents within a universe of discourse.

Research conducted by [9, 10] attempted to convert the structure and content from a PDF

document into XML. Both however noted the complexities of dealing with various presentation types

(tables, figures, captions). Their work was applied by A. Constantin et al. [10] to scientific literature

and achieved 77.45% accuracy on top-level heading identification and 74.05% on individual

bibliography items. A similar approach was also applied by [11, 12] who created XML-enabled

wrappers for scraping information off the web. X. Meng et al. [12] went one step further to allow the

user to define a schema in terms of type descriptors and mapping rules. They concluded that their

system can generate wrappers to a “very high accuracy”.

A number of IE approaches also make use of the Apache UIMA Ruta framework [13]. J.

Stadermann et al. [14] attempted to extract information from scanned legal contracts using OCR

technology. They concluded that their system was able to reach a precision rating of 97% on plain text

and 89% on tabular data (reduced by OCR inaccuracies), recall was slightly worse with 93% on plain

text and 81% on tabular data. H. Xu et al. [15] made use of MedEx6, which is built-in upon Apache

UIMA, to extract structured medication information from discharge summaries; they found F-

measures of greater than 90%.

2 Objectives

The research seeks to complete several realistic and feasible objectives:

1. To implement an extensible, scalable system that can accurately convert a readable PDF copy

of a Safety Datasheet into XML using a schema by the end of the research period. This

objective does not seek to address scanned or unreadable PDF documents.

This will be measured qualitatively once the research has concluded through the use of

software engineering and object oriented programming principles. Moreover, the scalability

of the system will be measured by stress-testing the software with various user-base sizes for

example: 10, 100, and 1000 per second.

6 Xu, H., 2013. MedEx - A tool for finding medication information. [Online]

Available at: http://knowledgemap.mc.vanderbilt.edu/research/content/medex-tool-finding-medication-

information

[Accessed 5 3 2015].

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 49 of 55

2. To create a schema for the first three sections of the SDS governed by the “CLP” regulation

that describes the areas of plain text data to extract. Using this information one is able to

determine the majority of the content for the remaining sections. This schema will be used to

support the extraction of plain text data, placing it in a regularised format (XML) with an

accuracy of greater than or equal to 95.

This will be measured once the research has concluded using a statistical technique known as

the F1-measure (see 3.2 Evaluation Methods).

3. Similar to objective #2 but to support the extraction of tabular data from the first three

sections of the SDS to an accuracy of greater than or equal to 90%. Again this objective will

be measured once the research has concluded and evaluated against the F1-measure.

4. To make use of detailed logging to support the detection of whether a given SDS complies

with the new regulation.

The nature of the system defines that information should be extracted from all required

subsections as defined within the “CLP” regulation. If the system were unable to locate the

content of a given subsection then it should generally be considered that it does not comply.

This would be measured once the research has concluded and evaluated against a gold

standard. To achieve this would involve the creation of a set of documents known to comply

and a set of documents that do not comply; the results would then be compared against those

from the system.

2.1 Implications

 The research intends to contribute a usable, extensible system that accurately supports the

conversion of SDS into XML, based on the agreed schema. It is hoped that the extensible nature of

the system should enable other industries outside of the field of chemical management to be able to

re-use parts for similar use cases. The system would enable SDS to easily be created, stored,

manipulated and managed independently of document editors such as Adobe Acrobat or Microsoft

Word. This is important because PDF was originally intended as a display format independent of

operating system and hardware constraints [16] and not for manipulation / integration. Furthermore, it

would mean that there is a standard format for the transmission of these documents electronically.

The work is particularly relevant at the moment with the change in regulation to “CLP”. The

highly sophisticated requirements of the legislation led some large industry companies to schematise

SDS into XML [17]. They share the vision of defining a framework for the structured exchange of

material SDS between different IT systems. This research complements their vision by supporting the

automatic conversion from PDF to XML. At the moment domain experts manually process the

compliance of these documents and track changes by storing physical revisions of the document. A

number of the systems at The REACH Centre [1] require metadata, stored within SDS, so extracting

this information is vitally important. Furthermore, an automatic conversion system would reduce the

need for paper based processing and would also reduce human error during these processes. The

schematised format would also offer an easy method to programmatically update SDS and further

integration of them into existing software solutions.

3 Methodology

 The system will be developed following a waterfall/iterative software development approach.

This style of development is particularly well suited to projects of short life, such as this one, and

makes it particularly easy to manage with a clear understanding of what and when deliverables will be

produced. The methodology is broken into a number of important stages: requirements, design,

implementation, testing and maintenance. The requirements section will make use of qualitative

interviews and analysing existing documentation (the EU “CLP” regulation”). These methods have

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 50 of 55

been chosen as only a few people within the company hold the domain-specific knowledge that

should be correctly understood in order to implement a solution.

3.1 Data Collection

 In order to best design and evaluate the system a large collection of safety Data Sheets are

required. Whilst all of these documents should adhere to the regulation it is more than likely that there

will be issues with compliance. Analysing these documents should help to identify common

terminology which can be filtered into the context-free grammar (see 4 Implementation). The

REACH Centre stores over 100,000 clients SDS in-house all of a variety of ages, formats and levels

of compliance. A subset of these documents will be requested for testing and evaluation purposes

during this work.

3.2 Evaluation Methods

 Quantitative analysis will be used to evaluate the accuracy of the system against a gold

standard data set. The gold standard data set will be created by a domain-expert by converting a

number of SDS into their XML equivalent governed by the “CLP” regulation. The data set should

consist of a variety of document styles including those that do and do not comply with the regulation.

Amongst this there should also be a variety of quality SDS for example those which have been

scanned and those which have not. An F1-measure will be used.

The limited project life and the method of data collection for building the gold standard data

set pose some concerns for the above evaluation methods. It currently takes domain-experts within the

company approximately one day to accurately check the compliance of an SDS and perform the

relevant updates. This is a somewhat similar task as the requirement to build a gold standard data set.

One problem with the above evaluation method is that due to the time taken to build the gold standard

the evaluation sample may not be large enough and hence not generalise well to a much larger

sample. To avoid this problem it may be possible to apply a similar technique to Wittek et al. [18]

who used the Apache UIMA Ruta framework to estimate performance on unseen documents while

using a small sample size.

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 51 of 55

4 Implementation

The aim of the research is to design and implement a system that can accurately convert a

PDF copy of a Safety Datasheet into its XML equivalent governed by a schema. In order to ensure

that the system is extensible and scalable it will be broken down into a number of key components:

Figure 8 Proposed system architecture

Figure 1 illustrates an example workflow including all the components of the proposed

system and the external component or “Web Site” which interacts with the system. It is intended that

the system will work independent of other software and hence all interaction will be performed

through a REST API. This should ensure that the system is extensible and not tied to any project

specific business logic.

The REST API component forms the frontend interface to the system enabling a user to

upload an SDS, track the progress of a conversion and also fetch the results. When a user uploads an

SDS the physical document will be uploaded and stored in a persistent storage, such as a database, to

ensure it is accessible to other company applications. Once the upload is complete the API would

forward the conversion request to a message queue which should meet the objective of a scalable

system. Worker processes will then fetch conversion requests from the message queue, get the SDS

from the database and begin performing all application specific logic. Once a conversion process has

been attempted the result would then be stored in the database and available for the client to collect at

a later date – for example a regular polling request.

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 52 of 55

4.1 Tasks

The research consists of several specific tasks as shown in Table 1.

Context Task
Start
Date

End
Date

Duration
Timeline

-
9

-
8

-
7

-
6

-
5

-
4

-
3

-
2

-
1 1 2 3 4 5 6 7

Industrial
Placement

at The
Reach
Centre

Requirements Gathering
interviews 19/01 21/01 2 days

 Research & Objective
Decision Making on OCR 22/01 30/01 9 days

 Implementing extensible
PDF to text system 02/02 24/02 4 weeks

 Research & Objective
Decision Making on PDF
Parser 24/02 24/02 1 days

 Proposal and report writing
(7,000 words) 25/02 13/03 3 weeks

Dissertation

Producing and gaining
agreement to Prototype 20/04 23/04 3 days

 Creating schema for IE on
SDS sections 1 - 3 24/04 29/04 4 days

 Implementing plain text
document parser 30/04 08/05 9 days

 Implementing tabular
document parser 11/05 29/05 3 weeks

 Testing and Evaluation 01/06 06/05 1 week

Table 1 Project Gantt chart

During the work placement:

1. ‘Requirements gathering’ ran across 2 days and involved interviews with stakeholders

(domain-experts within the company, and the director of IT)

2. ‘OCR Research’ ran across 9 days and involved evaluating various OCR systems against a set

of predefined criteria using Objective Decision Making to decide on an appropriate tool

3. ‘Implementation’ ran across 4 weeks and involved creating the base of the system. The

system defines a REST API which interacts with a message queue and worker processes to

convert a PDF to plain text. The system still requires the plain text to be converted to a

structured format using a schema (the research task).

4. ‘PDF Research’ ran 1 day and involved the identification of an appropriate PDF parser for

extracting plain text

5. ‘Creation of this proposal and associated report’

The research period will then involve the following tasks:

1. ‘Prototyping’ will run for 3 days and will involve the production of a sample system that

meets the specified requirements

2. ‘Creating the schema’ for SDS sections 1-3 will run for 4 days and involve creating a

mapping which specifies which subsections to extract from the SDS governed by the “CLP”

regulation. For example, you may wish to extract “Product Name” so the schema should

know its relative location within the document. This task will require reference to [17].

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 53 of 55

3. Implementing the ‘plain text parser’ will run for 9 days and marks the start towards achieving

the research goals. This task will require a Natural Language Processing library to build a

CFG and parse the plain-text document.

4. Implementing the ‘tabular data parser’ will run for 3 weeks as it is the more difficult of the

two tasks. This will require similar resources to task 3.

5. Finally ‘testing and evaluation’ will run for 1 week and will involve the construction of a gold

standard data set. This task will involve liaising with domain-experts within the company to

ensure accuracy when manually converting SDS to their XML equivalent.

4.2 Feasibility

 When dealing with SDS there are a few ethical concerns to note. Generally SDS in their final

form are publicly available and hence carry no issues. This being said, the research will be handling

the SDS of product ingredients and companies certainly wouldn’t want their competitors to know

what goes into an end product. Furthermore, one of the objectives of this work involves the detection

of potential compliance issues within an SDS. Due to the nature of the chemical industry, companies

would want the result of compliance reports to be dealt with in the strictest confidence as any non-

compliance would reflect badly on them. In order to mitigate this risk, any documents and logs that

are stored within persistent storage should be encrypted.

There are a number of challenges with respect to the feasibility of this research. One problem

relates to the dependence on a number of third-party libraries in order to achieve specific components

of the system for example: PDF parser, OCR, and the message queue. Relying on third-party libraries

causes ones implementation to inherit any security vulnerabilities and also the problem of what to do

should a library stop any further production. In order to best manage these risks an objective decision

making process will be used to compare and analyse a number of alternatives and the risks associated

with each. Moreover, [9, 10] note feasibility difficulties in parsing various presentation formats

(tables, captions, figures) in PDFs. This risk has been somewhat mitigated through specific objectives.

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 54 of 55

5 References

[1] A. Rowntree, “The Reach Centre,” 2015. [Online]. Available:

https://www.thereachcentre.com/site/content_home.php. [Accessed 1 March 2105].

[2] A. Muawia, A. Ahmed and M. Himmat, “Information Extraction Methods and

Extraction Techniques in the Chemical Document's Contents: Survey,” Journal of

Engineering and Applied Sciences, vol. 10, no. 3, 2015.

[3] T. Rocktäschel, M. Weidlich and U. Leser, “ChemSpot: a hybrid system for chemical

named entity recognition.,” Bioinformatics, vol. 28, no. 12, pp. 1633-1640, 2012.

[4] A. Usié, R. Alves, F. Solsona, M. Vázquez and A. Valencia, “CheNER: chemical

named entity recognizer.,” Bioinformatics, vol. 30, no. 7, pp. 1039-1040, 2014.

[5] P. Viola and M. Narasimhan, “Learning to extract information from semistructured

text using a discriminative context free grammar.,” In Proceedings of the ACM SIGIR, 2005.

[6] D. C. Wimalasuriya and D. Dou, “Ontology-based information extraction: An

introduction and a survey of current approaches.,” Journal of Information Science, 2010.

[7] P. Buitelaar, P. Cimiano and B. Magnini, “Ontology learning from text: An

overview.,” vol. 123, 2005.

[8] A. Maedche and S. Staab, “Ontology learning.,” in Handbook on ontologies, Berlin,

Springer, 2004, pp. 173-190.

[9] H. Déjean and J.-L. Meunier, “A system for converting PDF documents into

structured XML format,” in Document Analysis Systems VII, Berlin, Springer, 2006, pp.

129-140.

[10] A. Constantin, S. Pettifer and A. Voronkov, “PDFX: fully-automated PDF-to-XML

conversion of scientific literature,” in Proceedings of the 2013 ACM symposium of

Document engineering, ACM, 2013, pp. 177-180.

[11] L. Liu, C. P. Pu and W. Han, “XWRAP: An XML-enabled wrapper construction

system for web information sources,” in Data Engineering, 200. Proceedings. 16th

International Conference, IEEE, 2000, pp. 611-621.

[12] X. Meng, H. Lu and H. Wang, “SG-WRAP: a schema-guided wrapper generator,” in

Data Engineering, 2002. Proceedings. 18th International COnference, IEEE, 2002, pp. 331-

332.

[13] P. Kluegl, M. Toepfer, P.-D. Beck, G. Fette and F. Puppe, “UIMA Ruta: Rapid

development of rule-based information extraction applications,” Natural Language

Engineering, pp. 1-40, 2014.

[14] J. Stadermann, S. Symons and T. I. , “Extracting hierarchical data points and tables

from scanned contracts,” UIMA@GSCL, pp. 50-57, 2013.

[15] H. Xu, S. P. Stenner, S. Doan, K. B. Johnson, L. R. Waitman and J. C. Denny,

“MedEx: a medication information extraction system for clinical narratives.,” Journal of the

American Medical Informatics Association , vol. 17, no. 1, pp. 19-24, 2010.

SCC421: Information Extraction from Semi-Structured Documents

Kieran Brahney (32857004) Page 55 of 55

[16] Adobe, “PDF Reference sixth edition,” 11 2006. [Online]. Available:

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf.

[Accessed 09 03 2015].

[17] Alliance UG, “SDSCom XML - SDS and more,” [Online]. Available:

http://www.esdscom.eu/english/sdscom-xml/. [Accessed 01 03 2015].

[18] A. Wittek, M. Toepfer, G. Fette, P. Kluegl and F. Puppe, “Constraint-driven

Evaluation in UIMA Ruta.,” UIMA@ GSCL, vol. 1038, no. 2013, pp. 58--65.

[19] P. Viola and N. Mukund, “Learning to extract information from semi-structured text

using a discriminative context free grammar.,” In Proceedings of the 28th annual

international ACM SIGIR conference on Research and development in information retrieval,

pp. 330-337, 2005.

[20] A. Tharatipyakul, S. Numnark, D. Wichadakul and S. Ingsriswang, “ChemEx:

information extraction system for chemical data curation,” BMC bioinformatics, vol. 13, no.

17, p. S9, 2012.

[21] P.-D. Beck, “Identifikation und Klassifikation von Abschnitten in Arztbriefen,”

Master's thesis, University of Würzburg, 2013.

[22] H. Xu, “MedEx - A tool for finding medication information,” 2013. [Online].

Available: http://knowledgemap.mc.vanderbilt.edu/research/content/medex-tool-finding-

medication-information. [Accessed 5 3 2015].

	Abstract.
	Table of Contents
	Working Documents
	1 Introduction
	2 Background
	2.1 Existing Environment
	2.2 Relevant Work
	2.2.1 Statistical Modelling
	2.2.2 Named Entity Recognition
	2.2.3 Grammars
	2.2.4 PDF-to-XML
	2.2.5 Apache UIMA
	2.2.6 Regular Expressions

	2.3 Limitations

	3 Design
	3.1 System Architecture
	3.2 Database
	3.3 API
	3.3.1 GET documents
	3.3.2 GET documents/:id
	3.3.3 POST documents
	3.3.4 DELETE documents/:id

	3.4 Worker Process
	3.4.1 Message Queue
	3.4.2 Java PDF Libraries
	3.4.3 Lexical Specifications

	3.5 Summary

	4 Implementation
	4.1 Database
	4.2 API
	4.2.1 GET documents/:id
	4.2.2 POST documents
	4.2.3 DELETE documents/:id

	4.3 Communication Channels
	4.3.1 Publishing messages
	4.3.2 Consuming messages

	4.4 Worker Process
	4.4.1 PDF to Text
	4.4.2 Lexical Analysis

	4.5 Summary

	5 Testing
	5.1 Conversion Algorithm
	5.2 Variety of inputs
	5.3 PDF versions
	5.4 Character sets

	6 Evaluation
	6.1 Methodology
	6.2 Conversion Accuracy
	6.2.1 Safety Data Sheets
	6.2.1.1 Testing Data
	6.2.1.2 Evaluation Data

	6.2.2 Bibliography of Literature

	6.3 Scalability
	6.4 Summary

	7 Conclusion
	7.1 Review of the Aims
	7.2 Future Work
	7.3 Lessons Learned
	7.4 Closing Comments

	Acknowledgements
	References
	Appendix A: Web Service class diagram
	Appendix B: Message Queue Class Diagram
	Appendix C: Emergency phone numbers
	Appendix D: Proposal

